1,006 research outputs found

    The Major Heat Shock Proteins, Hsp70 and Hsp90, in 2-Methoxyestradiol-Mediated Osteosarcoma Cell Death Model

    Get PDF
    2-Methoxyestradiol is one of the natural 17β-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin

    VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP) during the estrous cycle.

    Get PDF
    Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus

    Cannabinoids Occlude the HIV-1 Tat-Induced Decrease in GABAergic Neurotransmission in Prefrontal Cortex Slices

    Get PDF
    In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is now considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids exhibit neuroprotective and anti-inflammatory properties in several central nervous system (CNS) disease models, but their effects in HAND are poorly understood. To address this issue, whole-cell recordings were performed on young (14 – 21 day old) C57BL/6J mice. We investigated the actions of the synthetic cannabinoid WIN55,212-2 (1 μM) and the endocannabinoid N-arachidonoyl ethanolamine (anandamide; AEA, 1 μM) in the presence of HIV-1 Tat on GABAergic neurotransmission in mouse prefrontal cortex (PFC) slices. We found a Tat concentration dependent (5 – 50 nM) decrease in the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid 1 receptor (CB1R) antagonist rimonabant (1 μM) and zero extracellular calcium prevented the significant Tat-induced decrease in mIPSCs. Further, bath-applied WIN55,212-2 or AEA by itself, significantly decreased the frequency, but not amplitude of mIPSCs and/or spontaneous IPSCs (sIPSCs), and occluded a further down-regulation of IPSCs by Tat. Pretreatment with rimonabant but not the CB2R antagonist AM630 (1 μM) prevented the WIN55,212-2- and AEA-induced decrease in IPSCs frequency without any further Tat effect. Results indicated a Tat-induced decrease in GABAergic neurotransmission, which was occluded by cannabinoids via a CB1R-related mechanism. Understanding the relationship between Tat toxicity and endocannabinoid signaling has the potential to identify novel therapeutic interventions to benefit individuals suffering from HAND and other cognitive impairments

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene

    Get PDF
    Background Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies. Objective Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene. Methods Cells (900677) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2. Results Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage, and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harbored by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677 cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677 cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677 cells to ionizing radiation. These cells also share milder sensitivities toward olaparib and formaldehyde with certain other FA cells. Conclusions XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins

    Iron deficiency in worsening heart failure is associated with reduced estimated protein intake, fluid retention, inflammation and antiplatelet use

    Get PDF
    AIMS: Iron deficiency (ID) is common in heart failure (HF) patients and negatively impacts symptoms and prognosis. The aetiology of ID in HF is largely unknown. We studied determinants and the biomarker profile of ID in a large international HF cohort. METHODS AND RESULTS: We studied 2357 worsening HF patients from the BIOSTAT-CHF cohort. ID was defined as transferrin saturation <20%. Univariable and multivariable logistic regression models were constructed to identify determinants for ID. We measured 92 cardiovascular markers (Olink Cardiovascular III) to establish a biomarker profile of ID. The primary endpoint was the composite of all-cause mortality and first HF rehospitalization. Mean age (±standard deviation) of all patients was 69 ± 12.0 years, 26.1% were female and median N-terminal pro B-type natriuretic peptide levels (+interquartile range) were 4305 (2360-8329) ng/L. Iron deficiency was present in 1453 patients (61.6%), with highest prevalence in females (71.1% vs. 58.3%; P < 0.001). Independent determinants of ID were female sex, lower estimated protein intake, higher heart rate, presence of peripheral oedema and orthopnoea, chronic kidney disease, lower haemoglobin, higher C-reactive protein levels, lower serum albumin levels, and P2Y12 inhibitor use (all P < 0.05). None of these determinants were sex-specific. The biomarker profile of ID largely consisted of pro-inflammatory markers, including paraoxonase 3 (PON3) and tartrate-resistant acid phosphatase type 5. In multivariable Cox proportional hazard regression analyses, ID was associated to worse outcome, independently of predictors of ID (hazard ratio 1.25, 95% confidence interval 1.06-1.46; P = 0.007). CONCLUSION: Our data suggest that the aetiology of ID in worsening HF is complex, multifactorial and seems to consist of a combination of reduced iron uptake (malnutrition, fluid overload), impaired iron storage (inflammation, chronic kidney disease), and iron loss (antiplatelets)

    The Use of PRV-Bartha to Define Premotor Inputs to Lumbar Motoneurons in the Neonatal Spinal Cord of the Mouse

    Get PDF
    The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons.Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24-32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32-40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8-12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells.The study establishes the time window for virally-labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks

    Inhibitory Control Deficits Associated with Upregulation of CB1R in the HIV-1 Tat Transgenic Mouse Model of Hand

    Get PDF
    In the era of combined antiretroviral therapy, HIV-1 infected individuals are living longer lives; however, longevity is met with an increasing number of HIV-1 associated neurocognitive disorders (HAND) diagnoses. The transactivator of transcription (Tat) is known to mediate the neurotoxic effects in HAND by acting directly on neurons and also indirectly via its actions on glia. The Go/No-Go (GNG) task was used to examine HAND in the Tat transgenic mouse model. The GNG task involves subjects discriminating between two stimuli sets in order to determine whether or not to inhibit a previously trained response. Data reveal inhibitory control deficits in female Tat(+) mice (p = .048) and an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group (p < .05). A significant negative correlation was noted between inhibitory control and IL CB1R expression (r = -.543, p = .045), with CB1R expression predicting 30% of the variance of inhibitory control (R(2) = .295, p = .045). Furthermore, there was a significant increase in spontaneous excitatory postsynaptic current (sEPSC) frequencies in Tat(+) compared to Tat(-) mice (p = .008, across sexes). The increase in sEPSC frequency was significantly attenuated by bath application of PF3845, a fatty acid amide hydrolase (FAAH) enzyme inhibitor (p < .001). Overall, the GNG task is a viable measure to assess inhibitory control deficits in Tat transgenic mice and results suggest a potential therapeutic treatment for the observed deficits with drugs which modulate endocannabinoid enzyme activity. Graphical Abstract Results of the Go/No-Go operant conditioning task reveal inhibitory control deficits in female transgenic Tat(+) mice without significantly affecting males. The demonstrated inhibitory control deficits appear to be associated with an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group

    Proportionate and disproportionate policy responses to climate change: core concepts and empirical applications

    Get PDF
    A fresh perspective on policy-making and planning has emerged which views disproportionate policy as an intentional policy response. A disproportionate policy response is understood to be a lack of‘fit’or balance between the costs of a public policy and the benefits that are derived from this policy, and between policy ends and means. This paper applies this new perspective on the proportionality of policy-making to the area of climate change. The first part of the paper discusses the underlying causes of disproportionate policy responses in broad terms and then applies the theoretical reasoning to understand the conditions in which they are likely to appear in relation to climate change. These conditions are hypothesized to relate to four main factors: economic considerations; levels of public demand; focusing events; and strategic considerations. It concludes with the suggestion that societal actors may be able to manipulate these four factors to encourage politicians to adopt policies that mitigate climate change more rapidly than is currently the case in most countries
    • …
    corecore