33 research outputs found

    A novel computer adaptive word list memory test optimized for remote assessment: Psychometric properties and associations with neurodegenerative biomarkers in older women without dementia

    Get PDF
    Introduction: This study established the psychometric properties and preliminary validity of the Stricker Learning Span (SLS), a novel computer adaptive word list memory test designed for remote assessment and optimized for smartphone use. Methods: Women enrolled in the Mayo Clinic Specialized Center of Research Excellence (SCORE) were recruited via e-mail or phone to complete two remote cognitive testing sessions. Convergent validity was assessed through correlation with previously administered in-person neuropsychological tests (n = 96, ages 55-79) and criterion validity through associations with magnetic resonance imaging measures of neurodegeneration sensitive to Alzheimer\u27s disease (n = 47). Results: SLS performance significantly correlated with the Auditory Verbal Learning Test and measures of neurodegeneration (temporal meta-regions of interest and entorhinal cortical thickness, adjusting for age and education). Test-retest reliabilities across two sessions were 0.71-0.76 (two-way mixed intraclass correlation coefficients). Discussion: The SLS is a valid and reliable self-administered memory test that shows promise for remote assessment of aging and neurodegenerative disorders

    Developmental expression of orphan g protein-coupled receptor 50 in the mouse brain

    Get PDF
    [Image: see text] Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis

    A predicted operon map for Mycobacterium tuberculosis

    Get PDF
    The prediction of operons in Mycobacterium tuberculosis (MTB) is a first step toward understanding the regulatory network of this pathogen. Here we apply a statistical model using logistic regression to predict operons in MTB. As predictors, our model incorporates intergenic distance and the correlation of gene expression calculated for adjacent gene pairs from over 474 microarray experiments with MTB RNA. We validate our findings with known examples from the literature and experimentation. From this model, we rank each potential operon pair by the strength of evidence for cotranscription, choose a classification threshold with a true positive rate of over 90% at a false positive rate of 9.1%, and use it to construct an operon map for the MTB genome

    Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease

    Get PDF
    Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies

    Contributions of animal models to the study of mood disorders

    Full text link
    corecore