1,260 research outputs found

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field

    Research at ITM on Vehicle Dynamics

    Get PDF

    Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films

    Full text link
    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film thickness dependent. For films with thickness h between 2 <= h <= 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films 11.5 <= h <= 20 nm, the intermediate stages consisted of regularly-sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films [A. Sharma et al, Phys. Rev. Lett., v81, pp3463 (1998); R. Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2 . The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.Comment: 20 pages, 5 figure

    Orbital free ab initio molecular dynamics study of liquid Al near melting

    Get PDF
    ProducciĂłn CientĂ­ficaThe orbital free ab initio molecular dynamics method is applied to study the static and dynamic structure of liquid Al near the triple point. The method uses a new kinetic energy functional, along with a local pseudopotential constructed within the same kinetic energy functional. The results obtained for the dynamic structure factor are compared with recent experimental data

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission

    Get PDF
    Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.Comment: 20 pages, 8 figures, accepted for publication in the Journal of Astronomical Instrumentatio
    • …
    corecore