57 research outputs found

    Investigation of the stability of commercial neutron probes

    Get PDF
    At the Paul Scherrer Institute's Calibration Laboratory, neutron reference fields are provided for the calibration of ambient and personal dose equivalent (rate) metres and passive dosemeters. To ensure traceability to the standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany, the neutron fields are characterised by means of a PTB-calibrated Berthold LB6411 neutron probe which is used as a secondary standard. The LB6411 detector suffers from an unstable, increasing dose rate reading in the order of up to +5 % (according to the manufacturers, this is due to a charging effect in the 3He proportional counter). In a calibration, this instability is usually corrected for based on the reading obtained with a test source. In this work, the instability was investigated by means of measurements under irradiation with ambient dose equivalent rates up to 24 mSv h-1 for up to 20 h and compared with the behaviour of an LB6419 and a Thermo Wendi-2 probe. The reading of the instruments was found to reach a plateau, e.g. it becomes stable after ∌90 min during irradiation with 10 mSv h-1 neutrons. The plateau is reached faster for higher dose rates. This supports the interpretation as a charging effect in the proportional counter. The effect could also be duplicated in an irradiation with photons from a 137Cs source. The decay time of the accumulated charge was found to be very long, i.e. the instrument showed a stable reproducible reading for up to 6 h after the plateau was reached. From these observations, a conditioning procedure was derived which ensures a stable operation of the instrument after an irradiation of the instrument preceding its use in the reference measurement

    Consolidation of temporal order in episodic memories

    Get PDF
    AbstractEven though it is known that sleep benefits declarative memory consolidation, the role of sleep in the storage of temporal sequences has rarely been examined. Thus we explored the influence of sleep on temporal order in an episodic memory task followed by sleep or sleep deprivation. Thirty-four healthy subjects (17 men) aged between 19 and 28 years participated in the randomized, counterbalanced, between-subject design. Parameters of interests were NREM/REM cycles, spindle activity and spindle-related EEG power spectra. Participants of both groups (sleep group/sleep deprivation group) performed retrieval in the evening, morning and three days after the learning night. Results revealed that performance in temporal order memory significantly deteriorated over three days only in sleep deprived participants. Furthermore our data showed a positive relationship between the ratios of the (i) first NREM/REM cycle with more REM being associated with delayed temporal order recall. Most interestingly, data additionally indicated that (ii) memory enhancers in the sleep group show more fast spindle related alpha power at frontal electrode sites possibly indicating access to a yet to be consolidated memory trace. We suggest that distinct sleep mechanisms subserve different aspects of episodic memory and are jointly involved in sleep-dependent memory consolidation

    The current progress of the ALICE Ring Imaging Cherenkov Detector

    Get PDF
    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June 200

    An imaging time-of-propagation system for charged particle identification at a super B factory

    Full text link
    Super B factories that will further probe the flavor sector of the Standard Model and physics beyond will demand excellent charged particle identification (PID), particularly K/pi separation, for momenta up to 4 GeV/c, as well as the ability to operate under beam backgrounds significantly higher than current B factory experiments. We describe an Imaging Time-of-Propagation (iTOP) detector which shows significant potential to meet these requirements. Photons emitted from charged particle interactions in a Cerenkov radiator bar are internally reflected to the end of the bar, where they are collected on a compact image plane using photodetectors with fine spatial segmentation in two dimensions. Precision measurements of photon arrival time are used to enhance the two dimensional imaging, allowing the system to provide excellent PID capabilities within a reduced detector envelope. Results of the ongoing optimization of the geometric and physical properties of such a detector are presented, as well as simulated PID performance. Validation of simulations is being performed using a prototype in a cosmic ray test stand at the University of Hawaii.Comment: 3 pages, 5 figures, submitted to TIPP09 proceeding

    First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    Full text link
    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.Comment: Presented at the International Conference NDIP-11, Lyon,July201

    Results from the ageing studies of large CsI photocathodes exposed to ionizing radiation in a gaseous RICH detector

    Get PDF
    We studied the ageing of large CsI photocathodes induced by ionizing particles (90Sr) by correlating the integrated charge dose of the ionic avalanches hitting the photocathode to the local changes of the Quantum Efficiency (QE). The drop of the QE of the irradiated CsI spots is reported as a function of the charge dose. It was found that the ageing process continues even in absence of irradiation

    Production technique and quality evaluation of CsI photocathodes for the ALICE/HMPID detector

    Get PDF
    Abstract The ALICE/HMPID detector has been equipped with 42 large area CsI photocathodes providing a total of 11 m 2 of photosensitive area for the detection of Cherenkov light. This production summary reports on the CsI coating procedure and provides results of the quality monitoring measurements by means of a photocurrent scanner system. The importance of the heat enhancement of CsI PCs is stressed and difficulties due to variations in this process are presented, followed by a discussion of possible influences of production parameters on this process

    Optimizing microsurgical skills with EEG neurofeedback

    Get PDF
    Background By enabling individuals to self-regulate their brainwave activity in the field of optimal performance in healthy individuals, neurofeedback has been found to improve cognitive and artistic performance. Here we assessed whether two distinct EEG neurofeedback protocols could develop surgical skill, given the important role this skill plays in medicine. Results National Health Service trainee ophthalmic microsurgeons (N = 20) were randomly assigned to either Sensory Motor Rhythm-Theta (SMR) or Alpha-Theta (AT) groups, a randomized subset of which were also part of a wait-list 'no-treatment' control group (N = 8). Neurofeedback groups received eight 30-minute sessions of EEG training. Pre-post assessment included a skills lab surgical procedure with timed measures and expert ratings from video-recordings by consultant surgeons, together with state/trait anxiety self-reports. SMR training demonstrated advantages absent in the control group, with improvements in surgical skill according to 1) the expert ratings: overall technique (d = 0.6, p < 0.03) and suture task (d = 0.9, p < 0.02) (judges' intraclass correlation coefficient = 0.85); and 2) with overall time on task (d = 0.5, p = 0.02), while everyday anxiety (trait) decreased (d = 0.5, p < 0.02). Importantly the decrease in surgical task time was strongly associated with SMR EEG training changes (p < 0.01), especially with continued reduction of theta (4–7 Hz) power. AT training produced marginal improvements in technique and overall performance time, which were accompanied by a standard error indicative of large individual differences. Notwithstanding, successful within session elevation of the theta-alpha ratio correlated positively with improvements in overall technique (r = 0.64, p = 0.047). Conclusion SMR-Theta neurofeedback training provided significant improvement in surgical technique whilst considerably reducing time on task by 26%. There was also evidence that AT training marginally reduced total surgery time, despite suboptimal training efficacies. Overall, the data set provides encouraging evidence of optimised learning of a complex medical specialty via neurofeedback training

    The sleep EEG spectrum is a sexually dimorphic marker of general intelligence

    Get PDF
    The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual “EEG fingerprint”. Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like “REM beta tufts” are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep
    • 

    corecore