2,034 research outputs found

    Philometra robusta sp. n. (Nematoda: Philometridae) from the abdominal cavity of the scribbled toadfish, Arothron mappa (Lesson) from the Philippines

    Get PDF

    Attention model of binocular rivalry

    Get PDF
    This is the final version of the article. Available from National Academy of Sciences from the DOI in this record.When the corresponding retinal locations in the two eyes are presented with incompatible images, a stable percept gives way to perceptual alternations in which the two images compete for perceptual dominance. As perceptual experience evolves dynamically under constant external inputs, binocular rivalry has been used for studying intrinsic cortical computations and for understanding how the brain regulates competing inputs. Converging behavioral and EEG results have shown that binocular rivalry and attention are intertwined: binocular rivalry ceases when attention is diverted away from the rivalry stimuli. In addition, the competing image in one eye suppresses the target in the other eye through a pattern of gain changes similar to those induced by attention. These results require a revision of the current computational theories of binocular rivalry, in which the role of attention is ignored. Here, we provide a computational model of binocular rivalry. In the model, competition between two images in rivalry is driven by both attentional modulation and mutual inhibition, which have distinct selectivity (feature vs. eye of origin) and dynamics (relatively slow vs. relatively fast). The proposed model explains a wide range of phenomena reported in rivalry, including the three hallmarks: (i) binocular rivalry requires attention; (ii) various perceptual states emerge when the two images are swapped between the eyes multiple times per second; (iii) the dominance duration as a function of input strength follows Levelt’s propositions. With a bifurcation analysis, we identified the parameter space in which the model’s behavior was consistent with experimental results.This work was supported by NIH National Eye Institute Grants R01-EY019693 (to M.C. and D.J.H.) and R01-EY025673 (to D.J.H.). H.-H.L. was supported by NIH Grant R90DA043849. J. Rankin was supported by the Swartz Foundation

    Constraining the Leading Weak Axial Two-body Current by SNO and Super-K

    Get PDF
    We analyze the Sudbury Neutrino Observatory (SNO) and Super-Kamiokande (SK) data on charged current (CC), neutral current (NC) and neutrino electron elastic scattering (ES) reactions to constrain the leading weak axial two-body current parameterized by L_1A. This two-body current is the dominant uncertainty of every low energy weak interaction deuteron breakup process, including SNO's CC and NC reactions. Our method shows that the theoretical inputs to SNO's determination of the CC and NC fluxes can be self-calibrated, be calibrated by SK, or be calibrated by reactor data. The only assumption made is that the total flux of active neutrinos has the standard ^8B spectral shape (but distortions in the electron neutrino spectrum are allowed). We show that SNO's conclusion about the inconsistency of the no-flavor-conversion hypothesis does not contain significant theoretical uncertainty, and we determine the magnitude of the active solar neutrino flux

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    Scattering by flexural phonons in suspended graphene under back gate induced strain

    Get PDF
    We have studied electron scattering by out-of-plane (flexural) phonon modes in doped suspended graphene and its effect on charge transport. In the free-standing case (absence of strain) the flexural branch shows a quadratic dispersion relation, which becomes linear at long wavelength when the sample is under tension due to the rotation symmetry breaking. In the non-strained case, scattering by flexural phonons is the main limitation to electron mobility. This picture changes drastically when strains above uˉ=10−4n(1012 cm−2)\bar{u}=10^{-4} n(10^{12}\,\text{cm}^{-2}) are considered. Here we study in particular the case of back gate induced strain, and apply our theoretical findings to recent experiments in suspended graphene.Comment: 4 pages, 3 figures, published versio
    • …
    corecore