53,452 research outputs found
Thermal pump-compressor for space use Patent
Thermal pump-compressor for converting solar energ
Analyzing the Data from X-ray Polarimeters with Stokes Parameters
X-ray polarimetry promises to deliver unique information about the geometry
of the inner accretion flow of astrophysical black holes and the nature of
matter and electromagnetism in and around neutron stars. In this paper, we
discuss the possibility to use Stokes parameters - a commonly used tool in
radio, infrared, and optical polarimetry - to analyze the data from X-ray
polarimeters such as scattering polarimeters and photoelectric effect
polarimeters, which measure the linear polarization of the detected X-rays.
Based on the azimuthal scattering angle (in the case of a scattering
polarimeter) or the azimuthal component of the angle of the electron ejection
(in the case of a photoelectric effect polarimeter), the Stokes parameters can
be calculated for each event recorded in the detector. Owing to the additive
nature of Stokes parameters, the analysis reduces to adding the Stokes
parameters of the individual events and subtracting the Stokes parameters
characterizing the background (if present). The main strength of this kind of
analysis is that the errors on the Stokes parameters can be computed easily and
are well behaved - in stark contrast of the errors on the polarization fraction
and polarization direction. We demonstrate the power of the Stokes analysis by
deriving several useful formulae, e.g. the expected error on the polarization
fraction and polarization direction for a detection of signal and
background events, the optimal observation times of the signal and
background regions in the presence of non-negligible background contamination
of the signal, and the minimum detectable polarization (MDP) that can be
achieved when following this prescription.Comment: 9 pages, 2 figures, accepted for publication in Astropart. Phy
A system for early warning of bearing failure
System for detecting incipient failure in ball bearings is described. Ultrasonic equipment detects bearing system resonance and provides warning signal through electronic circuitry. Detector can be used to evaluate performance of newly installed bearings. Schematic diagram is provided to show components
Metal alloy resistivity measurements at very low temperatures
High speed, automated system accurately measures to approximately one percent in three minutes. System identifies materials having constant thermal or electric conductivity, predicts new material properties, develops alloys in accordance with desired specifications, and develops nondestructive devices for measuring precipitation hardening
The Arches cluster revisited: I. Data presentation and stellar census
Context. Located within the central region of the Galaxy, the Arches cluster appears to be one of the youngest, densest and most massive stellar aggregates within the Milky Way. As such it has the potential to be a uniquely instructive laboratory for the study of star formation in extreme environments and the physics of very massive stars.
Aims. To realise this possibility, the fundamental physical properties of both cluster and constituent stars need to be robustly determined; tasks we attempt here.
Methods. In order to accomplish these goals we provide and analyse new multi-epoch near-IR spectroscopic data obtained with the VLT/SINFONI and photometry from the HST/WFC3. We are able to stack multiple epochs of spectroscopy for individual stars in order to obtain the deepest view of the cluster members ever obtained.
Results. We present spectral classifications for 88 cluster members, all of which are WNLh or O stars: a factor of three increase over previous studies. We find no further examples of Wolf-Rayet stars within the cluster; importantly no H-free examples were identified. The smooth and continuous progression in spectral morphologies from O super-/hypergiants through to the WNLh cohort implies a direct evolutionary connection. We identify candidate giant and main sequence O stars spectroscopically for the first time. No products of binary evolution may be unambiguously identified despite the presence of massive binaries within the Arches.
Conclusions. Notwithstanding difficulties imposed by the highly uncertain (differential) reddening to the Arches, we infer a main sequence/luminosity class V turn-off mass of ∼ 30 − 38M⊙ via the distribution of spectral types. Analysis of the eclipsing binary F2 suggests current masses of ∼ 80M⊙ and ∼ 60M⊙ for the WNLh and O hypergiant cohorts, respectively; we conclude that all classified stars have masses > 20M⊙. An age of ∼ 2.0 − 3.3Myr is suggested by the turn-off between ∼O4-5 V; constraints imposed by the supergiant population and the lack of H-free WRs are consistent with this estimate. While the absence of highly evolved WC stars strongly argues against the prior occurrence of SNe within the Arches, the derived age does accommodate such events for exceptionally massive stars. Further progress will require quantitative analysis of multiple individual cluster members in addition to further spectroscopic observations to better constrain the binary and main sequence populations; nevertheless it is abundantly clear that the Arches offers an unprecedented insight into the formation, evolution and death of the most massive stars Nature allows to form
Design and fabrication of prototype system for early warning of impending bearing failure
Ball bearing performance tests run on several identical ball bearings under a variety of load, speed, temperature, and lubrication conditions are reported. Bearing temperature, torque, vibration, noise, strain, cage speed, etc., were monitored to establish those measurements most suitable as indicators of ball bearing health. Tape records were made under steady-state conditions of a variety of speeds and loads. Sample sections were selected for narrowband spectral analysis with a real time analyzer. An artificial flow was created across the inner race surface of one bearing using an acid etch technique to produce the scratch. Tape records obtained before and after established a characteristic frequency response that identifies the presence of the flow. The signals found most useful as indicators of performance degradation were ultrasonic outputs
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
An updated stellar census of the Quintuplet cluster
Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event.
Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars.
Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively.
Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable.
Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe
Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair-transistor
We present radio-frequency measurements on a single-Cooper-pair-transistor in
which individual quasiparticle poisoning events were observed with microsecond
temporal resolution. Thermal activation of the quasiparticle dynamics is
investigated, and consequently, we are able to determine energetics of the
poisoning and un-poisoning processes. In particular, we are able to assign an
effective quasiparticle temperature to parameterize the poisoning rate.Comment: 4 pages, 4 fig
New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3 +1.0 −0.8 kpc and an age of 44 +9 −8 Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63 +12 −11 Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales
- …