232 research outputs found

    Pion propagation in the linear sigma model at finite temperature

    Get PDF
    We construct effective one-loop vertices and propagators in the linear sigma model at finite temperature, satisfying the chiral Ward identities and thus respecting chiral symmetry, treating the pion momentum, pion mass and temperature as small compared to the sigma mass. We use these objects to compute the two-loop pion self-energy. We find that the perturbative behavior of physical quantities, such as the temperature dependence of the pion mass, is well defined in this kinematical regime in terms of the parameter m_pi^2/4pi^2f_pi^2 and show that an expansion in terms of this reproduces the dispersion curve obtained by means of chiral perturbation theory at leading order. The temperature dependence of the pion mass is such that the first and second order corrections in the above parameter have the same sign. We also study pion damping both in the elastic and inelastic channels to this order and compute the mean free path and mean collision time for a pion traveling in the medium before forming a sigma resonance and find a very good agreement with the result from chiral perturbation theory when using a value for the sigma mass of 600 MeV.Comment: 18 pages, 11 figures, uses RevTeX and epsfig. Expanded conclusions, added references. To appear in Phys. Rev.

    Scalar meson dynamics in Chiral Perturbation Theory

    Full text link
    A comparison of the linear sigma model (Lσ\sigmaM) and Chiral Perturbation Theory (ChPT) predictions for pion and kaon dynamics is presented. Lowest and next-to-leading order terms in the ChPT amplitudes are reproduced if one restricts to scalar resonance exchange. Some low energy constants of the order p4p^4 ChPT Lagrangian are fixed in terms of scalar meson masses. Present values of these low energy constants are compatible with the Lσ\sigmaM dynamics. We conclude that more accurate values would be most useful either to falsify the Lσ\sigmaM or to show its capability to shed some light on the controversial scalar physics.Comment: 9 pages, REVTeX 4.0. Final version accepted for publicatio

    B->rho pi decays, resonant and nonresonant contributions

    Full text link
    We point out that a new contribution to B decays to three pions is relevant in explaining recent data from the CLEO and BABAR collaborations, in particular the results on quasi-two-body decays via a rho meson. We also discuss the relevance of these contribution to the measurement of CP violations.Comment: 5 pages, 2 figures, few references and minor comments adde

    Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances

    Get PDF
    We determine the radiative decay amplitudes for decay into DD^* and Dˉγ\bar{D} \gamma, or DsD^*_s and Dˉsγ\bar{D}_s \gamma of some of the charmonium like states classified as X,Y,Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the Dˉγ\bar{D} \gamma or Dˉsγ\bar{D}_s \gamma invariant mass show a peculiar behavior as a consequence of the DDˉD^* \bar{D}^* nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.Comment: 18 pages, 9 figure

    Chiral Lagrangian for strange hadronic matter

    Get PDF
    A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L×SU(3)RSU(3)_L \times SU(3)_R σ\sigma-model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model.Comment: Revtex, submitted to Phys. Rev.

    Structure of the axial-vector meson Ds1(2460)D_{s1}(2460) and the strong coupling constant gDs1DKg_{D_{s1} D^* K} with the light-cone QCD sum rules

    Full text link
    In this article, we take the point of view that the charmed axial-vector meson Ds1(2460)D_{s1}(2460) is the conventional csˉc\bar{s} meson and calculate the strong coupling constant gDs1DKg_{D_{s1} D^* K} in the framework of the light-cone QCD sum rules approach. The numerical values of strong coupling constants gDs1DKg_{D_{s1} D^* K} and gDs0DKg_{D_{s0} D K} are very large, and support the hadronic dressing mechanism. Just like the scalar mesons f0(980)f_0(980) and a0(980)a_0(980), the scalar meson Ds0(2317)D_{s0}(2317) and axial-vector meson Ds1(2460)D_{s1}(2460) may have small csˉc\bar{s} kernels of the typical csˉc\bar{s} meson size, the strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional csˉc\bar{s} mesons in the constituent quark models, and enrich the pure csˉc\bar{s} states with other components.Comment: 17 pages, 7 figures, revised version. In the first version, I take the value fDs1=(0.25±0.02)GeVf_{D_{s1}}= (0.25\pm0.02)GeV in numerical calculation, in the revised version, I take a small value fDs1=(0.225±0.020)GeVf_{D_{s1}}=(0.225 \pm0.020)GeV, the value of the strong coupling constant is also change

    A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS

    Full text link
    We introduce coupled channels of Bethe-Salpeter mesons both in the boundstate equation for mesons and in the mass gap equation for chiral symmetry. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion and prevents a systematic shift of the hadron spectrum. We study the decay of a scalar meson coupled to a pair of pseudoscalars. We also show that coupled channels reduce the breaking of chiral symmetry, with the same Feynman diagrams that appear in the coupling of a scalar meson to a pair of pseudoscalar mesons. Exact calculations are performed in a particular confining quark model, where we find that the groundstate I=0,3P0qqˉI=0, ^3P_0 q \bar q meson is the f_0(980) with a partial decay width of 40MeV. We also find a 30% reduction of the chiral condensate due to coupled channels.Comment: 17 pages, Revtex, 8 eps figures, and several eps diagrams in equation

    History of exotic Meson (4-quark) and Baryon (5-quark) States

    Full text link
    I briefly review the history of exotic meson (4-quark) and baryon (5-quark) states, which is rooted in the formalism of Regge pole and duality. There are robust model-independent predictions for the exchange of 4-quark (Baryonium) Regge trajectories in several processes, which are strongly supported by experiment. On the other hand the predictions for the spectroscopy of 4-quark resonances are based on specific QCD inspired models, with some experimental support. The corresponding predictions for the recently discovered exotic baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a topical review in J. Phys.

    A Quark Model Calculation of gamma gamma to pi pi Including Final State Interactions

    Full text link
    A quark model calculation of the processes gamma gamma -> pi+ pi- and gamma gamma -> pi0 pi0 is performed. At tree level, only charged pions couple to the initial state photons and neutral pions are not expected in the final state. However, a small but significant gamma gamma -> pi0 pi0 cross section is observed. We demonstrate that this may be accounted for by a rotation in isospin space induced by final state interactions. The resulting pi+ pi- cross section is in good agreement with experiment while the pi0 pi0 cross section is in qualitative agreement with the data.Comment: 22 Revtex pages, 5 postscript figure
    corecore