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Abstract. The physical meaning of bare and dressed scattering matrix singularities has been investigated.
Special attention has been attributed to the role of well known invariance of scattering matrix with respect
to the field transformation of the effective Lagrangian. Examples of evaluating bare and dressed quantities
in various models are given.
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This paper is a collection of different, sometimes con-
flicting standpoints presented at the BRAG2007 pre-meeting
of the NSTAR2007 Workshop. It is organized in the fol-
lowing way:
The Introduction is written by A. Švarc, Sect. 2.1 by S.
Capstick, 2.2 by C. Hanhart, 3.1 by S. Scherer, 3.2 by J.
Gegelia, 4.1 by M. Giannini and E. Santopinto, 4.2 by T. -
S. H. Lee, T. Sato and N. Suzuki and the Conclusion by
A. Švarc, S. Capstick and L. Tiator.

1 Introduction

Establishing a well defined point of comparison between
experimental results and theoretical predictions has for
decades been one of the main issues in hadron spectroscopy,
and the present status is still not satisfactory. Experi-
ments, via partial wave (PWA) and amplitude analysis
(AA), can give reliable information on scattering matrix
singularities, while quark model calculations usually give
information on resonant states spectrum in the first order
impulse approximation (bare/quenched mass spectrum).
And these two quantities are by no means the same. Up
to now, in the absence of a better recipe, these quantities
have usually been directly compared, but the awareness
has ripen that the clear distinction between the two has

to be made. One either has to dress quark-model reso-
nant states spectrum and compare the outcome to the
experimental scattering matrix poles, or to try to take
into account all self-energy contributions which are im-
plicitly included in the measured scattering matrix pole
parameters, make a model independent undressing proce-
dure and compare the outcome to the impulse approxima-
tion quark-model calculations. The first options seems to
be feasible but complicated, but the latter one seems to be
impossible due to very general field-theory considerations.

We report on investigating both options.

An attempt how to un-quench the constituent quark
model of ref. [1], together with describing all accompany-
ing complications, is presented. The procedure seems to
be cumbersome, but straightforward.

The second option, undressing the experimentally ob-
tained scattering matrix singularities, however, seems to
be inherently model dependent due to very general ar-
guments originating from the local field theory. A simple
model, illustrating this claim is presented.

In spite of looking entirely dissimilar, problem of model
independent undressing of full scattering matrix singular-
ities seems to be strongly correlated to the recent con-
troversy whether the off-shell effects are measurable or
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not. It is therefore essential to extend the discussion to
(un)measurability of off-shell effects as well.

For decades the off-shell properties of two-body ampli-
tudes seemed to be a legitimate measurable quantity, and
numerous attempts to get hold of it in nucleon-nucleon
bremsstrahlung and real and virtual Compton scattering
on the nucleon have been made. However, in early 2000-es
it became apparent that strong field-theoretical arguments
do not speak in favor of this claim [2,3,4]. It seems that
it is very likely that the well known invariance of scat-
tering matrix with respect to the field transformation of
the effective Lagrangian [5] makes it possible to transform
the off-shell effects into the contact terms for diagrams of
the same power counting level. This effectively makes the
off-shell effects an unmeasurable quantity.

When applied to the effective two body meson-nucleon
amplitudes, this statement implies that the ability of cou-
pled-channel formalisms to separate the self-energy term
and evaluate the bare scattering matrix poles (singulari-
ties in which the meson-exchange effects are fully taken
into account) is a model dependent procedure. Namely,
any method for evaluating self-energy contributions un-
avoidably demands a definite assumption on the analytic
form of the off-shell interaction terms, hence introduces
model dependent and consequently unmeasurable hadronic
shifts.

The invariance of different parameterizations of the
scattering matrix singularities with respect to field - re-
definitions is also the object of our study. Scattering ma-
trix poles are nowadays quantified in two dominant ways:
either as Breit-Wigner parameters, i.e. parameters of a
Breit-Wigner function which is used to locally represent
the experimentally obtainable T-matrix, or as scattering
matrix poles (either T or K). In spite of the fact that it
is since Hoehler’s analysis [6,7] quite commonly accepted
that Breit-Wigner parameters are necessarily model de-
pendent quantities, they are still widely used to quantify
the scattering matrix poles. Only recently the scattering
matrix poles are being shown in addition. We demonstrate
that within the framework of effective field theory, scat-
tering matrix poles are, contrary to Breit-Wigner param-
eters, unique with respect to arbitrary field-redefinitions.

Bare and dressed scattering matrix quantities have for
more then a decade been calculated and presented within
a framework of various coupled-channel models [8,9], and
definite correlation between scattering matrix singulari-
ties and quark-model quantities has been in general es-
tablished [10]. However, the most direct connection be-
tween full scattering matrix singularities and hadron mod-
els with confinement forces has been offered in [11,12,
13] for the various versions of dynamical coupled-channel
model. In these models the bare N∗ states are understood
as the excited states of the nucleon if its coupling with
the reaction channels is turned off, so the authors natu-
rally speculate that the bare N∗ states of these models
correspond to the predictions from a hadron model with
confinement force, such as the well-developed constituent
quark model with gluon-exchange interactions. The role

of hadronic shift model dependence, however, is not ex-
plicitly discussed.

A simple conclusion emerges: dressed scattering ma-
trix singularities are the best, model independent meeting
point between quark model predictions and experiments,
and bare quantities in coupled-channel models remain to
be legitimate quantities to be extracted only within a
framework of a well defined model. To understand and
interpret them correctly, one has to keep track of the ex-
istence of the hadronic mass shifts produced by off-shell-
ambiguities, and take them fully into account.

2 Dressing and undressing scattering matrix
singularities

2.1 Un-quenching the quark model

The usual prescription for calculation of the masses of
baryons is to ignore the effects of decay-channel couplings,
which is the assumption that the states are infinitely long-
lived. Given that baryon widths are comparable to the
mass splittings between similar states caused by short-
range interactions between the quarks, the effects on baryon
masses of continuum (baryon-meson) states, or equiva-
lently qqq–qq̄ components, clearly cannot be ignored. The
problem is that there are many distinct intermediate states
which can contribute substantially to the self energies of
baryons through baryon-meson loops, because of the pres-
ence of many thresholds in the resonance region. Calcu-
lations of the effect of two-meson intermediate states in
mesons have been carried out, especially for the interesting
problem of the ω–ρmass difference [14,15] which illustrate
the complications which arise in the case of baryons. In or-

MBB’C(k)

B B

C

B’

k

Fig. 1. Calculation of baryon self energies in the quark model

der to calculate the self energy of a baryon B(0) due to a
particular baryon-meson intermediate state B′(−k)C(k),
as in Fig. 1, we require a calculation of the dependence
of the vertex MBB′C(k) on the magnitude k of the loop
momentum k. This in turn requires a model of the spec-
trum (including states not seen in experiment), which pro-
vides wave functions for the baryons, and a model of the
B(0) → B′(−k)C(k) decay vertices. A popular choice for
the former is some form of constituent quark model, and
for the latter is a pair-creation model such as the 3P0

model illustrated in Fig. 2, where baryons decay by the
creation of a quark-antiquark pair with the quantum num-
bers of the vacuum.
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Fig. 2. Pair creation model of baryon decays

In order to self-consistently calculate the masses of
baryons in the presence of baryon-meson intermediate states,
one possible approach [16] is as follows. The masses and
decays are calculated using a three-quark Hamiltonian
Hqqq and a pair-creation Hamiltonian Hpc, that depend
on strong coupling, quark mass, and string tension pa-
rameters α0

s, m
0
i , and b0, etc., and a pair-creation coupling

strength γ. These parameters are usually determined by a
fit to the (dressed) spectrum EB and decay partial widths
in the absence of Fock-space components higher than qqq,

EB = M0
B(α0

s,m
0
i , b

0, ...).

The correction due to the loop B → B′C is

EB = M0
B(α0

s,m
0, b0, ...) +ΣB′C(EB , EB′ ;α0

s,m
0
i , b

0),

where

ΣB′C = P

∫

d3k
|〈B′(−k)C(k)|Hpc|B(0)〉|

2

EB −
√

E2
B′ + k2 −

√

E2
C + k2 + iǫ

.

The imaginary part of the loop integral is ΓB→B′C/2. A
sum is to be performed over baryon-meson intermediate
states B′C , and the parameters α0

s, m
0
i , b

0, and γ,... are
to be adjusted for self-consistent solution with EB equal
to the dressed baryon mass. In principle one should solve
similar equations for the meson masses EC .

This procedure is equivalent to second order perturba-
tion theory in the decay Hamiltonian Hpc, and allows cal-
culation of the (momentum-space) continuum B′C com-
ponent of the dressed baryon states, and also the mixing
B → B′C → B′′ between different baryon states caused
by the continuum intermediate states.

Calculation of this kind have been applied to N , ∆, Λ,
Σ and Σ∗ ground and (singly) orbitally excited states us-
ing intermediate states made up of ground state baryons,
with the pseudoscalar mesons π, K, η, η′ in Ref. [17]
and these pseudoscalar mesons plus the vector mesons ρ,
ω and K∗ in Refs. [18,19,20]. Because there are many
baryon-meson thresholds nearby in energy, for example
the Nρ and ∆ρ thresholds are close to those of N(1535)π
or Λ(1405)K, one should not restrict the intermediate me-
son states to π, or even all pseudoscalars, or the interme-
diate baryon states to N and ∆, or even all octet and
decuplet ground states.

Zenczykowski [18] showed that if one assumes exact
SU(3)f⊗SU(2)spin symmetry, that only ground state ba-
ryons and mesons exist, that all octet and decuplet baryons
have the same mass M0

B and the same wave function, and
that all pseudoscalar and vector ground-state mesons have
the same mass M0

C and the same wave function, that

all self energy loop integrals are the same, apart from
SU(6)spin−flavor factors at the vertices. Under these con-
ditions we expect the sum of self energy contributions to
the nucleon and ∆(1232) masses to be identical. Interest-
ingly, the sum of the squares of the SU(6)spin−flavor factors
is the same only if we include all baryon-meson combina-
tions (non-strange, strange, or both) consistent with the
conserved quantum numbers, including both pseudoscalar
and vector mesons. This is true of the self energies of any
ground state baryon, and is also true if the 3P0 model
is used to calculate the vertex factors, as it reduces to
SU(6)W in this limit.

Away from the SU(3)f limit, Tornqvist and Zenczy-
kowski [21] were able to show that with the introduc-
tion of a simple pattern of SU(3)f breaking present in
the ground-state baryon and meson mass spectra, that
the usual SU(6) relations for baryon masses are present
in the dressed baryon masses calculated to first order in
the symmetry breaking parameters. This suggests that we
can interpret SU(6) symmetry breaking effects as partly
due to spin and flavor-dependent interactions between the
quarks, and partly due to loop effects.

It is clear from this and other calculations that the
effects of these self energies on the spectrum are substan-
tial. Zenczykowski [18] finds many mass splittings close to
those of the dressed pole parameters from analyses, with-
out spin and flavor-dependent interactions between the
quarks. Other calculations show splittings in the dressed
P -wave (lowest orbitally) excited baryons which resemble
spin-orbit effects [17,19,20]. These could cancel against
those expected from other sources and provide a solu-
tion to the spin-orbit problem in certain quark models
of baryon masses.

These calculations lack a self-consistent treatment of
external and intermediate baryon states, and so it is not
clear that the sum over intermediate baryon-meson states
has converged. Geiger and Isgur [14] demonstrated that
this sum does converge, albeit slowly, using a non-relativistic
quark model for baryon masses and wave functions and
a 3P0 model for their decays. Using a covariant model
based on the Schwinger-Dyson Bethe-Salpeter approach
was shown to lead to faster convergence in Ref. [15]. A
study of the dressed masses of N and ∆ ground and P -
wave excited baryons [22] which involves intermediate pseu-
doscalar and vector ground-state mesons and many in-
termediate baryons (ground states, and N , ∆, Λ, Σ, Σ∗

excited states up to the second band of negative-parity
states at roughly 2100 MeV), representing hundreds of in-
termediate states, is underway. Vertex form factors are
calculated analytically using mixed relativized-model [23]
wave functions and the 3P0 model [24].

This study shows that the usual 3P0 model gives ver-
tices which are too hard, giving large contributions from
high loop momenta. They can be softened by adopting a
pair-creation form factor which decreases as the relative
momentum of the created quark and antiquark increases.
This calculation is currently being reworked to allow self-
consistent renormalization of the quark model parameters.
As an example, in Ref. [22] the strong coupling parameter



4 S. Capstick et el : The physical meaning of scattering matrix singularities ...

α0
s was reduced in order to take into account the additional
∆−N splitting in the sums over baryon-meson loops con-
tributing to the self energies of both of these states. Simi-
larly, in their calculation of these effects in mesons, Geiger
and Isgur [14] showed that the formation of an interme-
diate meson pair was equivalent to string breaking, which
has the effect of renormalizing the meson string tension.
Barnes and Swanson [25] have examined shifts in the char-
monium spectrum due to D, D∗, Ds and D∗

s meson pairs.
In conclusion, the next Fock-space component is likely

more important than differences among qqq models. Cal-
culating its effects requires the use of a full set of SU(6)-
related intermediate states, spatially excited intermediate
baryons, and a careful treatment of mixing effects. Renor-
malization of the parameters in the quark model parame-
ters such as αs, the quark masses, the string tension, and
the pair-creation strength needs to be carried out system-
atically. This requires examining the mass shifts of more
than just N , ∆ and their negative-parity excitations. De-
cay vertices need additional suppression when the dressed
masses of external states are well above the threshold for
an intermediate state, which is the case in relativistic mod-
els.

2.2 Undressing the dressed scattering matrix
singularities

To get a better understanding of the relation of bare quan-
tities to dressed quantities it is sufficient to study a system
of two nucleon like states (N and R) coupled to a scalar
field (σ) [26]. A possible Lagrangian reads

L1 = N̄ (i∂/−MN)N + R̄
(

i∂/−M0
R

)

R

+
1

2

(

∂µσ∂µσ −m2
)

+ gσ
(

R̄N + N̄R
)

... . (1)

Here the superscript 0 indicates that masses are bare quan-
tities that undergo dressing beyond tree level1. The result-
ing vertex is shown as diagram (a) in Fig. 3. The dots indi-
cate possible more complex terms, like contact terms of the
type σ2R̄R (see Fig. 3(c)). However, in phenomenological
studies those are rarely included. From this Lagrangian we
may now calculate observables like scattering amplitudes.
To keep things simple we focus only on the self–energy of
the R field. The corresponding diagram is shown in Fig.
4(a). The real part of this diagram provides the so called
hadronic shift — the difference between the bare mass and
the physical mass — and the imaginary part the width.

A theorem based on very general assumptions in field
theory states that if two fields φ and χ are related non–
linearly (φ = χF (χ) with F (0) = 1) then the same observ-
ables arise if one calculates with φ using L(φ) or with χ
using L(χF (χ)) [27]. Thus instead of the fields in Eq. (1)
we may switch to a modified nucleon field defined through

N −→ N ′ = N + ασR ,

1 In principle also the coupling g and the mass of σ and
N are bare quantities, however, to ease notation we drop the
corresponding superscript, for in what follows we focus solely
on the self energy of the R field.

N R

σ

N R

σ

RR

σ σ

(a) (b) (c)

Fig. 3. Vertices from the interaction Lagrangians of Eqs. (1)
and (3).

where α is an arbitrary, real parameter. Expressed in terms
of N ′ the interaction part of the original Lagrangian now
reads

LI
1′ = gσ

(

R̄N ′ + N̄ ′R
)

− ασ
(

R̄ (i∂/−MN )N ′ + h.c.
)

+ σR̄
[

α2 (i∂/−MN) − 2gα
]

Rσ + ... . (2)

In addition to the vertex of the previous Lagrangian now
two new structures appear: a momentum dependent RNσ
vertex (depicted in Fig. 3(b)) and a σ2R̄R vertex (de-
picted in Fig. 3(c)). The resulting contributions to the
R–selfenergy from this Lagrangian are shown in Fig. 4(a)–
(d). The field theoretic theorem quoted above gives that
the total self energy contribution from the modified La-
grangian is identical to that of the original Lagrangian
with the same parameters. Especially, the hadronic shift
remains the same and it seems that indeed it is a well
defined quantity. However, the problem is that we do not
know the true hadronic Lagrangian. Thus, starting from
Eq. (1) is as justified as starting from the following inter-
action Lagrangian

LI
2 = gσ

(

R̄N + N̄R
)

− ασ
(

R̄ (i∂/−MN )N + h.c.
)

+ ... . (3)

Obviously the only difference to the previous equation is
that the σ2R̄R vertex was abandoned. On the one loop
level thus the only difference compared to the previous
expression for the R–selfenergy is that tadpole diagrams
were removed. Since this class of diagrams does not lead to
non–analyticities, their effect can always be absorbed into
the bare mass and the wave function renormalization of
the R field. Therefore, with properly adjusted parameters,
the self–energy is the same to one–loop between the theory
that follows from L1 and that from L2.

Is there any way in practise to decide, which one of
the two Lagrangians is to be preferred? The answer to
this question is no for the following reasons: although the
σ2R̄R contact term can contribute to the R self energy
at three loop order, this is of no practical significance,
since not only has any effective Lagrangian a too limited
range of applicability and accuracy to allow for the extrac-
tion of such effects but also a complete treatment should
include anyway direct σR → σR transitions in both La-
grangians in addition to the terms given explicitly above.
The latter argument also applies to information deduced
from σR → σR cross sections. Therefore there is in prac-
tice no way to decide which one of the two interaction
Lagrangians — Eq. (1) or Eq. (3) — is to be preferred. As
outlined above, however, quantities like the self–energies
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(a) (b) (c) (d)

Fig. 4. Selfenergies for the R field to one loop order from toy–model I (Eq. (1)) and toy–model II (Eq. 3).

of the resonance R are different in the two approaches
and consequently the bare masses as extracted from fits
to experiment are different. We therefore conclude that
bare masses (or in general bare quantities) do not have
any physical significance.

The question studied here is very closely linked to the
question of measurability of off–shell effects. The argu-
ment just presented can also be used as yet another il-
lustration that off–shell effects are not observable. This
already follows from a comparison of Eq. (1) and Eq. (2).
As argued above both lead to identical observables. Es-
pecially, the on–shell RNσ vertex that can be related to
the decay width from R → σN is the same for both mod-
els. However, in our example for off–shell nucleons the
vertex can be anything. In general, within a consistent
field theory off–shell effects either can be absorbed into
counter–terms or have to cancel exactly. The same issue
is discussed for bremsstrahlung in Ref. [4]. Another illus-
trative example of the cancellation of off–shell effects is
provided in Ref. [28] for the reaction NN → NNπ.

It should be stressed that the question in focus here is
very different to that of the relation between two–nucleon
and three–nucleon observables and the presence of three–
body forces. The main difference is that in the few nu-
cleon systems it is possible to construct three–body forces
that are consistent with the two–nucleon interaction used,
e.g. within effective field theory — for a recent review
see Ref. [29]. Changing the two–nucleon interactions leads
also to controlled changes in the three–body forces in the
sense sketched above. However, what would be needed for
a model independent extraction of bare hadron masses
would be a method to identify the hadronic interaction
that is the one that matches to the particular quark model,
thus a connection is needed between two systems with
very different degrees of freedom. We argue that it follows
from the reasoning above that this identification can not
be made as a matter of principle. However, the inclusion
of hadronic loops within the quark model, as sketched,
e.g. in the presentation by Simon Capstick, is obviously
justified.

We therefore have to conclude that the only quantities
relevant for spectroscopy that can be extracted from ex-
periment are resonance poles and the corresponding residues.
However, this is still a lot for both quantities contain im-
portant structure information like the amount of SU(3) vi-
olation or even the very nature of the state [30]. A extrac-
tion of poles and residues from the data needs coupled–
channel codes of the type of Refs. [31,32,33] with the cor-
rect analytical properties and consistent with unitarity.

Only the then a controlled analytic continuation to the
complex plain is possible.

3 Field-theory considerations

3.1 From off-shell to on-shell kinematics

It is a natural and legitimate question to ask whether
the off-shell behavior of particular interaction vertices is
unique and whether it is possible to extract such behavior
from empirical information similarly as one, say, extracts
the electromagnetic form factors of the nucleon from elas-
tic electron scattering. In this context one might think of
the electromagnetic interaction of a bound (off-shell) nu-
cleon or the investigation of the off-shell nucleon-nucleon
amplitude entering the nucleon-nucleon-bremsstrahlung
process. For the case of pions, Compton scattering [34]
and pion-pion bremsstrahlung [2] were discussed using chi-
ral perturbation theory (ChPT) at lowest order. It was
shown that off-shell effects with respect to the effective
pion fields depend on both the model used and the choice
of representation for the fields. From that the conclusion
was drawn that off-shell effects are not only model depen-
dent but also representation dependent, making a unique
extraction of off-shell effects impossible. The spin-1/2 case
was discussed in Ref. [3].

A related situation occurs when one is interested in
corrections to current-algebra results obtained from the
partially conserved axial-vector current (PCAC) relation

∂µA
µ,a = M2

πFπΦ
a, (4)

where Aµ,a is the isovector axial-vector current and Φa is
a renormalized field operator creating and destroying pi-
ons; Mπ and Fπ denote the pion mass and decay constant,
respectively. While predictions of current algebra and the
PCAC relation involve the so-called soft-pion limit,
limq0→0 limq→0[· · ·], amplitudes for physical pions are to
be taken at q2 = M2

π . Can the connection between soft-
pion kinematics and on-shell kinematics be uniquely de-
termined? The answer is yes, if the problem is entirely
formulated in terms of the relevant QCD Green functions.

We will illustrate these issues in the framework of ChPT
[35] which establishes a systematic connection with the
underlying field theory, namely, QCD. Let us first discuss
off-shell effects with respect to the effective fields. To that
end, we consider ππ scattering at lowest order in ChPT
(see Sect. 4.6.2 of Ref. [36] for more details):

L2 =
F 2

π

4
Tr

[

∂µU(∂µU)†
]

+
F 2

πM
2
π

4
Tr(U + U †),
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where M2
π = 2Bm̂. B is related to the quark condensate

〈q̄q〉0 in the chiral limit and m̂ is the average of the u- and
d-quark masses [35]; U is an SU(2) matrix containing the
pion fields. We will use two alternative parameterizations
of U :

U(x) =
1

Fπ
[σ(x) + iτ · π(x)] , σ(x) =

√

F 2
π − π2(x),

U(x) = exp

[

i
τ · φ(x)

Fπ

]

= cos

(

φ

Fπ

)

+ iτ · φ̂ sin

(

φ

Fπ

)

.

The σ and exponential parameterizations are related by a
field transformation (change of variables)

π

Fπ
= φ̂ sin

(

φ

Fπ

)

=
φ

Fπ

(

1 −
1

6

φ2

F 2
π

+ · · ·

)

.

The relevant ππ interaction Lagrangians read

L4π
2 =

1

2F 2
π

∂µπ · π∂µπ · π −
M2

π

8F 2
π

(π2)2,

L4φ
2 =

1

6F 2
π

(∂µφ · φ∂µφ · φ − φ2∂µφ · ∂µφ) +
M2

π

24F 2
π

(φ2)2.

Observe that the two interaction Lagrangians depend dif-
ferently on the respective pion fields. For Cartesian isospin
indices a, b, c, d the Feynman rules for the scattering pro-
cess πa(pa) + πb(pb) → πc(pc) + πd(pd) read, respectively,

M4π
2 = i

(

δabδcd s−M
2
π

F 2
π

+δacδbd t−M
2
π

F 2
π

+δadδbc u−M
2
π

F 2
π

)

,

M4φ
2 = M4π

2

−
i

3F 2
π

(

δabδcd + δacδbd + δadδbc
)

(Λa + Λb + Λc + Λd) ,

where we introduced Λk = p2
k −M2

π and the usual Man-
delstam variables s = (pa + pb)

2, t = (pa − pc)
2, and

u = (pa − pd)
2 satisfying s + t + u = p2

a + p2
b + p2

c + p2
d.

If the initial and final pions are all on the mass shell, i.e.,
Λk = 0, the scattering amplitudes are the same, in agree-
ment with the equivalence theorem of field theory [37].
On the other hand, if one of the momenta of the external

lines is off mass shell, the amplitudes M4π
2 and M4φ

2 dif-
fer. In other words, a “direct” calculation of ππ scattering
in terms of the effective fields gives a unique result inde-
pendent of the parameterization of U only for the on-shell
matrix element.

According to the standard argument in nucleon-nucleon
bremsstrahlung one would now try to discriminate be-
tween different on-shell equivalent ππ amplitudes through
an investigation of the reaction πa(pa)+πb(pb) → πc(pc)+
πd(pd)+ γ(k). This claim was critically examined in Refs.
[2,3]. To that end the electromagnetic field is included
through the covariant derivative DµU = ∂µU+ieAµ[Q,U ]
where Q = diag(2/3,−1/3) is the quark charge matrix. In
the σ parameterization, the total bremsstrahlung ampli-
tude is given by the sum of only such diagrams, where
the photon is radiated off the initial and final charged pi-
ons, respectively. One may then ask how the different off-

shell behavior of the ππ amplitude of M4φ
2 enters into the

calculation of the bremsstrahlung amplitude. Observe, in
this context, that the exponential parameterization gener-
ates electromagnetic interactions involving 2n pion fields,
where n is a positive integer. In the exponential parame-
terization an additional 4φγ interaction term relevant to
the bremsstrahlung process is generated. Hence the total
tree-level amplitude now contains an additional four-pion-
one-photon contact diagram. Combining the contribution

due to the off-shell behavior in the ππ amplitude M4φ
2

with the contact-term contribution, we found a precise
cancelation of off-shell effects and contact interaction such
that the final results are the same for both parameteriza-
tions. This is once again a manifestation of the equiva-
lence theorem [37]. What is even more important in the
present context is the observation that the two mecha-
nisms, i.e. contact term vs. off-shell effects, are indistin-
guishable since they lead to the same measurable ampli-
tude.

Now, what about the off-shell behavior of QCD Green
functions? The method developed by Gasser and Leutwyler
[35] deals with Green functions of color-neutral, Hermi-
tian quadratic forms involving the light-quark fields q =
(u, d)T of QCD and their interrelations as expressed in the
Ward identities. In particular, these Green functions can,
in principle, be calculated for any value of squared mo-
menta even though ChPT is set up only for a low-energy
description. For the discussion of ππ scattering one con-
siders the four-point function [?]

Gabcd
PPPP (xa, xb, xc, xd) ≡ 〈0|T [P a(xa) · · ·P d(xd)]|0〉 (5)

with the pseudoscalar quark density P a = iq̄γ5τ
aq. In

order so see that Eq. (5) can indeed be related to ππ scat-
tering, we investigate the matrix element of P a evaluated
between a single-pion state and the vacuum [?]:

〈0|P a(0)|πb(q)〉 ≡ δabGπ. (6)

The coupling of an external pseudoscalar source p to the
Goldstone bosons is given by

Lext = i
F 2

πB

2
Tr(pU † − Up)

=

{

2BFπp
aπa,

2BFπpaφa[1 − φ 2/(6F 2
π) + · · ·],

(7)

where the first and second lines refer to the σ and expo-
nential parameterizations of U , respectively. From Eq. (7)
we obtain Gπ = 2BFπ independent of the parameteriza-
tion used which, since the pion is on-shell, is a consequence
of the equivalence theorem [37]. As a consistency check,
let us verify the PCAC relation from the QCD Lagrangian

∂µA
µ,a = m̂iq̄γ5τ

aq ≡ m̂P a,

evaluated between a single-pion state and the vacuum.
The axial-vector current matrix element obtained from L2

reads

〈0|Aµ,a(x)|πb(q)〉 = iqµFπe
−iq·xδab. (8)
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Taking the divergence implies M2
πFπ = m̂Gπ. In other

words,

Φa(x) ≡
m̂P a(x)

M2
πFπ

(9)

can serve as a so-called interpolating pion field in the LSZ
reduction formula. Using Eq. (9), the reduction formula
relates the S-matrix element of ππ scattering to the QCD
Green function involving four pseudoscalar densities

Sfi =

(

−i

Gπ

)4

(p2
a −M2

π) · · · (p2
d −M2

π)

×

∫

d4xa · · · d
4xd e

−ipa·xa · · · eipd·xdGabcd
PPPP (xa, xb, xc, xd).

Using translational invariance, let us define the momen-
tum space Green function as

(2π)4δ4(pa + pb + pc + pd)F
abcd
PPPP (pa, pb, pc, pd) =

∫

d4xad
4xbd

4xcd
4xd e

−ipa·xae−ipb·xbe−ipc·xce−ipdxd

×Gabcd
PPPP (xa, xb, xc, xd),

where we define all momenta as incoming. The usual rela-
tion between the S matrix and the T matrix, S = I + iT ,
implies for the T -matrix element 〈f |T |i〉 = (2π)4δ4(Pf −
Pi)Tfi and, finally, for M = iTfi:

M =
1

G4
π





∏

k=a,b,c,d

lim
p2

k
→M2

π

(p2
k −M2

π)



F abcd
PPPP (10)

with F abcd
PPPP ≡ F abcd

PPPP (pa, pb,−pc,−pd). We will now de-
termine the Green function F abcd

PPPP using the σ and expo-
nential parameterizations for U . In the first parameteriza-
tion we only obtain a linear coupling between the external
pseudoscalar field and the pion field [see Eq. (7)] so that
only one Feynman diagram contributes

F abcd
PPPP = (2BFπ)4

i

p2
a −M2

π

· · ·
i

p2
d −M2

π

M4π
2 . (11)

The Green function F abcd
PPPP depends on six independent

Lorentz scalars which can be chosen as the squared invari-
ant momenta p2

k and the three Mandelstam variables s, t,
and u satisfying the constraint s+ t+ u =

∑

k p
2
k.

Using the second parameterization we will obtain a
contribution which is of the same form as Eq. (11) but with

M4π
2 replaced by M4φ

2 . Clearly, this is not yet the same
result as Eq. (11) because of the terms proportional to Λk

in M4φ
2 . However, in this parameterization the external

pseudoscalar field also couples to three pion fields [see Eq.
(7)], resulting in four additional contributions

∆aF
abcd
PPPP + · · · +∆dF

abcd
PPPP

with

∆aF
abcd
PPPP (pa, pb,−pc,−pd)

= (2BFπ)4
i

p2
a −M2

π

· · ·
i

p2
d −M2

π

×
iΛa

3F 2
π

(δabδcd + δacδbd + δadδbc), (12)

and analogous expressions for the remaining∆F s. In total,
we find a complete cancelation with those terms propor-
tional to Λk (in the second parameterization) and the end
result is identical with Eq. (11)! Finally, using Gπ = 2BFπ

and inserting the result of Eq. (11) into Eq. (10) we obtain
the same scattering amplitude as in the “direct” calcula-

tion of M4π
2 and M4φ

2 evaluated for on-shell pions.
This example serves as an illustration that the method

of Gasser and Leutwyler generates unique results for the
Green functions of QCD for arbitrary four-momenta. There
is no ambiguity resulting from the choice of variables used
to parameterize the matrix U in the effective Lagrangian.
These Green functions can be evaluated for arbitrary (but
small) four-momenta. Using the reduction formalism, on-
shell matrix elements such as the ππ scattering amplitude
can be calculated from the QCD Green functions. The re-
sult for the ππ scattering amplitude as derived from Eq.
(10) agrees with the “direct” calculation of the on-shell

matrix elements of M4π
2 and M4φ

2 . On the other hand,

the Feynman rules of M4π
2 and M4φ

2 when taken off shell,
have to be considered as intermediate building blocks only
and thus need not be unique.

3.2 Model (in)dependence of pole positions and
Breit-Wigner parameters

A popular definition of masses of unstable particles cor-
responding to a (relativistic) Breit-Wigner formula makes
use of the zero of the real part of the inverse propagator.
It has been shown that such a definition leads to field-
redefinition and gauge-parameter dependence of the mass
starting at two-loop order [38,39,40,41,42,43,44]. In con-
trast, defining the mass and width in terms of the complex-
valued position of the pole of the propagator leads to both
field-redefinition and gauge-parameter independence.

As the baryon resonances are thought to be described
by QCD, with the progress of lattice techniques and, es-
pecially, the low-energy effective theories (EFT) of QCD
(see, e.g., [45,35,46,47,48,49,50] and references therein)
the question of defining baryon resonance masses becomes
important. Here we examine this issue for the ∆ reso-
nance. As discussed in Ref. [7], the conventional reso-
nance mass and width determined from generalized Breit-
Wigner formulas have problems regarding their relation
to S-matrix theory and suffer from a strong model de-
pendence. Here, we will show that these parameters, in
addition, depend on the field-redefinition parameter in a
low-energy EFT of QCD.

For simplicity we ignore isospin and consider an EFT
of a single nucleon, pion, and ∆ resonance. Defining

Λµν = −(i ∂/−m∆)gµν+i (γµ∂ν+γν∂µ)−iγµ∂/γν−m∆γµγν ,

the free Lagrangian is given by

L0 = ψ̄µ Λµν ψ
ν + Ψ̄(i ∂/ −mN )Ψ +

1

2
∂µπ∂

µπ . (13)

Here, the vector-spinor ψµ describes the ∆ in the Rarita-
Schwinger formalism [51], Ψ stands for the nucleon field
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with mass mN , and π represents the pion field which we
take massless to simplify the calculations. The interaction
terms have the form

Lint = g ∂νπ ψ̄µ (gµν − γµγν)Ψ + H.c. + · · · , (14)

where the ellipsis refers to an infinite number of interac-
tion terms which are present in the EFT. These terms
also include all counter-terms which take care of diver-
gences appearing in our calculations. Although our results
are renormalization scheme independent, for simplicity we
use the dimensional regularization with the minimal sub-
traction scheme.

Let us consider the field transformation

ψ̄µ → ψ̄µ + ξ ∂µπΨ̄ , ψν → ψν + ξ ∂νπΨ , (15)

where ξ is an arbitrary real parameter. When inserted into
the Lagrangians of Eqs. (13) and (14), the field redefinition
generates additional interaction terms. The terms linear in
ξ are given by

Ladd int = ξ ∂µπ Ψ̄ Λµν ψ
ν + ξ ∂νπ ψ̄µ Λµν Ψ . (16)

Because of the equivalence theorem physical quantities
cannot depend on the field redefinition parameter ξ. The
complex-valued position of the pole of the ∆ propagator
does not depend on ξ. In contrast, the mass and width
defined via (the zero of) the real and imaginary parts of
the inverse propagator depend on ξ at two-loop order.

The dressed propagator of the ∆ in n space-time di-
mensions can be written as

− i

[

gµν −
γµγν

n− 1
−
pµγν − γµpν

(n− 1)m∆
−

(n− 2)pµpν

(n− 1)m2
∆

]

×
1

p/ −m∆ −Σ1 − p/Σ6
+ pole-free terms , (17)

where we parameterize the self-energy of the ∆ as

Σ1(p
2)gµν +Σ2(p

2)γµγν +Σ3(p
2)pµγν +Σ4(p

2)γµpν

+Σ5(p
2) pµpν +Σ6(p

2) p/gµν +Σ7(p
2) p/γµγν

+Σ8(p
2) p/pµγν +Σ9(p

2) p/γµpν +Σ10(p
2) p/pµpν . (18)

The complex pole z of the ∆ propagator is obtained by
solving the equation

z −m∆ −Σ1(z
2) − z Σ6(z

2) = 0 . (19)

The pole mass is defined as the real part of z.
On the other hand, the mass mR and width Γ of the ∆

resonance are often determined from the real and imagi-
nary parts of the inverse propagator (corresponding to the
Breit-Wigner parametrization), i.e.,

mR −m∆ − ReΣ1(m
2
R) −mR ReΣ6(m

2
R) = 0 ,

Γ = −2 ImΣ1(m
2
R) − 2mR ImΣ6(m

2
R) . (20)

We have calculated the ∆ mass using both definitions and
analyzed their ξ dependence to first order (for details see
Ref. [52]).

(a) (b)

(c) (d)

Fig. 5. ∆ self-energy diagrams. Solid, dashed, and double
lines correspond to nucleon, pion, and ∆, respectively.

The ∆ self-energy at one loop-order is given by the
diagram in Fig. 5 (a). The two-loop contributions to the ∆
self-energy are given in Fig. 5 (b) - (d). We are interested
in terms linear in ξ.

To find the pole of the propagator we insert its loop
expansion

z = m∆ + δ1z + δ2z + · · · (21)

in Eq. (19) and solve the resulting equation order by order.
The one-loop diagram results in the ξ-independent ex-

pression for δ1z. Calculating diagram (b) and (c) we find
that they give vanishing contributions. The ξ-dependent
contributions in δ2z, generated by the one-loop diagram
and by diagram (d) exactly cancel each other leading to
the ξ-independent pole of the propagator.

We perform the same analysis inserting the loop ex-
pansion of mR,

mR = m∆ + δ1m+ δ2m+ · · · , (22)

in Eq. (20). For δm1 the one-loop diagram gives a ξ-
independent expression. On the contrary, the ξ-dependent
contributions in δ2m, generated by the one-loop diagram
and by diagram (d) do not cancel, thus leading to a ξ-
dependent mass mR. An analogous result holds for the
width Γ obtained from Eq. (20).

To conclude, we addressed the issue of defining the
mass and width of the ∆ resonance in the framework of a
low-energy EFT of QCD. In general, the scattering ampli-
tude of a resonant channel can be presented as a sum of the
resonant contribution expressed in terms of the dressed
propagator of the resonance and the background contribu-
tion. The resonant contribution defines the Breit-Wigner
parameters through the real and imaginary parts of the
inverse (dressed) propagator. The resonant part and the
background separately depend on the chosen field vari-
ables, while the sum is of course independent of this choice.
We have performed a particular field transformation with
an arbitrary parameter ξ in the effective Lagrangian. In a
two-loop calculation we have demonstrated that the mass
and width of the ∆ resonance determined from the real
and imaginary parts of the inverse propagator depend on
the choice of field variables. On the other hand, the com-
plex pole of the full propagator does not depend on the
field transformation parameter ξ.

The above conclusions are not restricted to the con-
sidered toy model or EFT in general. Rather, our results
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are a manifestation of the general feature that the (rel-
ativistic) Breit-Wigner parametrization leads to model-
and process-dependent masses and widths of resonances.
Although in some cases (like the ∆ resonance) the back-
ground has small numerical effect on the Breit-Wigner
mass, still the pole mass and the width should be consid-
ered preferable as these are free of conceptual ambiguities.

4 Bare and dressed quantities within a well
defined model

4.1 Longitudinal and transverse helicity amplitudes of
nucleon resonances in a constituent quark model -
bare vs dressed resonance couplings

Many models have been built and applied to the descrip-
tion of hadron properties. An important role is played
by Constituent Quark Models (CQM), in which quarks
are considered as effective degrees of freedom. There are
many versions of CQM, which differ according to the cho-
sen quark dynamics: h.o. and three-body force [53], alge-
braic [54], hypercentral [55], Goldstone Boson Exchange
[56], instanton [57]. Here we report some results of the
hypercentral CQM (hCQM) [55] on the longitudinal and
transverse helicity amplitudes of the nucleon resonances.
In this model, the quark interaction is assumed to be given
by a hypercentral potential

V (x) = − τ/x + α x, x =
√

ρ2 + λ2 (23)

where x is the hyperradius expressed in terms of the in-
ternal Jacobi coordinates ρ and λ. A coulomb-like plus
linear confinement form of the potential is supported by
recent lattice QCD evaluations of the quark-antiquark po-
tential [58] and in this sense Eq. (23) can be considered as
the hypercentral approximation of a two-body Cornell-like
potential. The model interaction is completed by adding a
standard spin dependent hyperfine interaction Hhyp [53],
in order to reproduce the splittings within the SU(6) mul-
tiplets. The few free parameters (α, τ and the strength of
Hhyp) are fitted to the spectrum and the model is then
applied to calculate (i.e. to predict) various properties of
hadrons: the photocouplings [59], the transverse helicity
amplitudes for negative parity resonances [60], the elastic
form factors [61], the longitudinal and transverse helicity
amplitudes of all the main resonances [62].

It is interesting to analyze in a systematic way the
Q2 behaviour of the helicity amplitudes in comparison
with the existing data. Fig. 6 shows the results for the
transverse helicity amplitudes of the F15 resonance, results
which are typical for a J > 1/2 state [60,62]: the medium-
high Q2 behaviour is quite well reproduced, showing that
the hypercoulomb part of the interaction 1/x gives a fair
account of the short range, while at low Q2 there is a
lack of strength, particularly for the A3/2 amplitude. For
J = 1/2 states [59,62], there are some minor problems in
the low Q2 region, but for the rest the agreement with
data is satisfactory. Major problems are present for the
Roper resonance [62], a fact that may support the idea of
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Fig. 6. The transverse helicity amplitudes for the F15 reso-
nance obtained with the hCQM [62], compared with the ex-
perimental data, taken by an old compilation [63], recent JLab
experiments [64] and PDG [65].

a particular status of the radial excitations of the nucleon.
Discrepancies are present also for the ∆−resonance [62],
a feature which is typical of all CQMs; it is well known
that the quark model, while reproducing quite well the
baryon magnetic moments, fails in the case of the N −∆
transition magnetic moment. Taking into account the fact
that the proton radius, calculated with the wave functions
corresponding to the potential of Eq. (23), turns out to be
about 0.5fm, the emerging picture is that of a small quark
core surrounded by an external region, which is probably
dominated by dynamical effects not present in the CQM,
that is sea-quark or meson cloud effects [60].

These considerations are relevant in connection with
the issue of bare vs. dressed quantities. One should not
forget that the separation between bare and dressed quan-
tities is meaningful within a definite theoretical approach.
In CQM calculations the aim is not a fit but the descrip-
tion of observables, which in principle are dressed quanti-
ties (like baryon masses, magnetic moments, helicity am-
plitudes, etc). In any case the identification of quark re-
sults with bare quantities is questionable in view of the
fact that CQs have a mass and some dressing is implicitly
taken into account. However a consistent and systematic
CQM approach may be helpful in order to put in evidence
explicit dressing effects.

These effects have been recently calculated by means of
a dynamical model [66]. The meson cloud contribution to
various helicity amplitudes has been calculated and com-
pared with the hCQM predictions [67]. The two contri-
butions cannot be added, since they are calculated within
different frameworks, however it is interesting to note that
the meson cloud contribution is relevant at low Q2 and in
most cases it is important where the hCQM prediction
underestimates the data. An example of this situation is
given by the longitudinal and transverse helicity ampli-
tudes for the ∆−excitation [67]. The case of the S1/2 am-
plitude is particularly interesting (see Fig. 7) : the hCQM
is almost vanishing and the meson cloud contribution ac-
counts for practically the whole strength.
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Fig. 7. The Q2 dependence of the N → ∆ longitudinal he-
licity amplitude S1/2: superglobal fit performed with MAID
[68] (solid curve), predictions of the hypercentral Constituent
Quark Model [55,67,62] (dashed curve), pion cloud contribu-
tions calculated with the Mainz dynamical model [66] (dotted
curve). The data points at finite Q2 are the results of single-Q2

fits [67] on recent data quoted in ref. [67].

The problem is how to introduce dressing in the calcu-
lations. One way is to adopt a hadronic approach: meson
and baryons (nucleon and nucleon resonances) are the rel-
evant degrees of freedom and the dynamics is given by
meson-baryon interactions. This is certainly a consistent
approach which has been used with success by various
groups with different techniques (see e.g. [68,69,70]). An-
other possibility is given by the so called hybrid models,
where the baryons are considered as three-quark states
surrounded by a pion cloud and a direct quark-meson cou-
pling is introduced. In this way the electromagnetic exci-
tation acquires contributions also from the meson cloud.
This approach is very useful for preliminary calculations
(see ref. [71]), however a more promising method is pro-
vided by the inclusion of dressing mechanisms directly at
the quark level. This means in particular the inclusion of
higher Fock components in the baryon state:

|ΨB > = Ψ3q |qqq > + Ψ3q qq̄ |qqq qq̄ > (24)

and implies the necessity of unquenching the quark model,
as discussed in section 2.1. For the case of mesons, there
are pioneering works by Geiger and Isgur [72], where the
qq̄ pair creation mechanism is introduced at the micro-
scopic level within a string model. In the case of baryons,
the problem is more complicated and has been recently
treated performing the sum over intermediate quark loops
by means of group theoretic methods [73]. This approach
has been applied to the determination of the strange con-
tent of the proton [74] with good results. In this way we
have at our disposal a promising method for obtaining
an unquenched, that is dressed, formulation of the CQM.
The systematic calculation of baryon properties, such as
transition amplitudes (but also elastic form factors and
structure functions) in an unquenched CQM will supply
a set of dressed quantities to be compared directly with
data and will allow to understand where meson cloud or
(better) qq̄ effects are important.

One should however be aware of some problems, both
phenomenological and theoretical. From the phenomeno-
logical point of view, there is the problem of the sign of
the helicity amplitudes, which is actually extracted from
the meson electroproduction amplitude, the fact that the
PDG photon points are often non consistent and the need
of new and systematic data. The main theoretical prob-
lems are connected with the inclusion of relativity. The
kinematic relativistic corrections seem to be not impor-
tant for the helicity amplitudes [75], however relativity
should be consistently included both in the (unquenched)
CQM states and in the transition operators, leading to the
possibility of quark pair terms in the electromagnetic cur-
rent. In any case, the unquenching of the CQM is expected
to produce a substantial improvement in the theoretical
description of baryon properties. In particular, it will be
possible to calculate simultaneously the electromagnetic
processes and the strong decays and the baryons reso-
nances will acquire a non zero width through the coupling
to the continuum part of the spectrum.

4.2 Nucleon Resonances and Hadron Structure
Calculations

4.2.1 What are the nucleon resonances ?

To answer this question, it is useful to recall some text-
book (For example, see Refs.[76,77,78]) definition of reso-
nances. Phenomenologically, a resonance (R) is identified
with a peak in a plot of the reaction cross section as func-
tion of the collision energy E or invariant mass W . At en-
ergies near the peak position, one can fit such data near
the peak by

σa,b(W ∼ mR) ∼ ρ(W )
|ΓR,a|

2|ΓR,b|
2

(W −mR)2 + |Γ0

2 |2
(25)

where ρ(W ) is an appropriate phase space factor, mR the
position of the peak, and Γ0 the width of the peak. The
expression Eq.(25) has the same function form of the de-
cay rate of an unstable system with a mass ∼ mR and a
life time τR ∼ 1/Γ0. It is thus natural to interpret that the
cross section Eq.(25) is due to the excitation of an unsta-
ble system during the collision. How this unstable system
is formed from the entrance and exit channels is a dynam-
ical question which can only be answered by modeling the
reaction mechanisms and the internal structure of all par-
ticles involved. We will address this question within the
Hamiltonian formulation of the problem. This is rather
different from the S-matrix approach.

Within the Hamiltonian formulation, there are two
ways to derive the expression Eq.(25) depending on the
structure of the excited unstable system. Let us first con-
sider the one defined in Feshbach’s textbook (page 23 of
Ref.[78]). It can be stated as the following :

A resonance is formed in a process that the in-
cident projectile completely lose its identity, amal-
gamating with the target system to form a com-
pound state. Namely, the evolution of the whole
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system can not be defined in terms of the motion

of the projectile and its transmutation.

The expression Eq.(25) corresponding to this defini-
tion of resonances can be formulated by assuming that
the Hamiltonian of the system has the following form

H = H0 +H ′ (26)

with

H ′ =
∑

a

ΓR,a (27)

where ΓR,a defines the decay of an unstable system R
with a mass M0 into channel a. The reaction amplitude is
defined by

T (E) = H ′ +H ′ 1

E −H + iǫ
H ′ (28)

¿From Eqs.(27)-(28), it is straightforward to see that the
reaction cross section for b→ a can be written as

σa,b(W ) = ρ(W )|TR
a,b(W )| (29)

with

TR
a,b(W ) =

ΓR,a(ka)ΓR,b(kb)

W −M0 −Σ(W )
(30)

where ka is the on-shell momentum of channel a and

ΣR(W ) =
∑

a

< R|Γ †
R,a

1

W −H0 + iǫ
ΓR,a|R > (31)

We can cast Eq.(30) into

TR
a,b(W ) =

Γ ∗
R,a(ka)ΓR,b(kb)

W −MR(W ) + iΓ tot(W )
2

(32)

where

MR(W ) = M0 +Re(ΣR(W )) (33)

Γ tot(W )

2
= −Im(ΣR(W )) (34)

By using Eqs.(29) and (32) to fit the expression Eq.(25),
the parameters of the Hamiltonian are then related to the
data by the following relations

mR = MR(W = mR) = M0 +Re(ΣR(mR)) (35)

Γ0 = Γ tot(W = mR) = −2Im(ΣR(mR)) (36)

Eqs.(35)-(36) then allow us to use the experimental values
mR and Γ0 to extract the property of the unstable system,
specified by M0 and ΓR,a of the Hamiltonian, through the
evaluation of Eqs.(31)-(33) at energies near W = mR.

The second mechanism which can also yield a cross
section of the form of Eq.(25) is :

An unstable system is formed during the colli-

sion by an attractive force between the interacting
particles which do not lose their identities.

The simplest parameterization of an attractive force is
a separable potential

H ′ = g†
1

C
g (37)

The solution of Eq.(28) then become

T (W ) =
g∗(k)g(k)

C − z(W )
(38)

where

z(W ) =< g|
1

W −H0 + iǫ
|g > (39)

If the parameters ofH ′ are chosen such that C−Re(z(W )) →
0 on the physical world W → W0 where W0 is a real num-
ber, we can expand

C −z(W ) = (40)

[ C −R(W0) −R′(W0)(W −W0) + · · ·] − iI(W )

∼ −R′(W0)

[ W −W0 −
1

R′(W0)
(R(W0) − C) + i

1

R′(W0)
I(W )]

where R(W0) = Re(z(W0)), I(W ) = Im(z(W )), and
R′(W0) = ∂Re(z(W ))/∂W |W=W0

. We then can write at
W →W0

T (W ∼W0) = (41)

−g∗a(k0)
1

R′(W0)gb(k0)

W − [W0 + 1
R′(W0) (R(W0) − C)] + i 1

R′(W0)
I(W0)

The above expression can give resonant cross section Eq.(25)
if the parameters of g and C can be chosen to satisfy

mR = W0 +
1

R′(W0)
(R(W0) − C) (42)

Γ0

2
=

1

R′(W0)
I(W0) (43)

4.2.2 Dynamical Models for investigating Nucleon
Resonances

¿From the above two examples, we see that the resonant
cross section Eq.(25) can correspond to two very differ-
ent internal structure of the excited unstable system. The
nucleon resonances we are interested in correspond to the
unstable systems defined by the Hamiltonian Eq.(27). For
the meson-nucleon reactions, such unstable systems are
due to the excitation of the quark-gluon substructure of
the nucleon.

In reality, the situation is much more complicated. In
the reactions involving composite systems, such as atoms,
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nuclei and nucleons, the excitations of resonances always
involve non-resonant direct interactions. For example, the
non-resonant interactions in pion-nucleon scattering could
be due to the exchange of ρ meson. The reaction formula-
tion for analyzing such reactions is well presented in Fes-
hbach’s textbook[78]. We now briefly describe how such a
formulation can be used to investigate nucleon resonances
in meson-nucleon reactions.

The starting point is to divide the Hilbert space into a
P space for the entrance and exit channels and Q for the
rest. One can cast the equation of motion in the P -space
as

(E −Heff )PΨ = 0, (44)

where

Heff = HPP +HPQ
1

E(+) −HQQ
HQP . (45)

Here E(+) = E + iǫ specifies the boundary condition and
we have defined projected operator HPP = PHP , HPQ =
PHQ and HQQ = QHQ. Now consider the eigenstates of
HQQ which can be discrete bound Φs or unbound Φǫ,α

states

HQQΦs = ǫsΦs (46)

HQQΦ(ǫ, α) = ǫΦ(ǫ, α) (47)

with

< Φs|Φs′ > = δs,s′ (48)

< Φ(ǫ, α)|Φ(ǫ′, α′) > = δα,α′δ(ǫ− ǫ′) (49)

We then expand

Heff −HPP =
∑

s

HPQΦs >< ΦsHQP

E − ǫs
+

+

∫

dα

∫

dǫ
HPQΦ(ǫ, α) >< Φ(ǫ, α)HQP

E(+) − ǫ
(50)

One can see from the above equation that rapid energy
dependence of Heff will occur as the energy approaches
one of the bound state energy ǫs. This is the origin of
rapid energy-dependence of the cross sections. As shown in
Feshbach’s book (page 158-162), the amplitude at E ∼ ǫs
can be written as

Tfi = TP
fi +

+
< χ(−)|HPQ|Φs >< Φs|HQPχ

(+) >

E − ǫs− < Φs|WQQ|Φs >
(51)

with

WQQ = HQP
1

E(+) − ĤPP

HPQ (52)

where

ĤPP = HPP +
∫

dα

∫

dǫ
HPQΦ(ǫ, α) >< Φ(ǫ, α)HQP

E(+) − ǫ
(53)

and χ(±) are the solutions of

(E − ĤPP )χ(+) = 0 (54)

(E − ĤPP )χ(−)∗ = 0 (55)

In this formulation, one bound state of HQQ will corre-
spond to one resonance. Namely, one can predict whether
a resonance can appear in a particular partition of Hilbert
space by examining whether bound states can be gener-
ated from the Hamiltonian when the coupling with the
states P are turned off.

We now point out that the dynamical model developed
in Ref.[8] (MSL model) for investigating meson-baryon
reactions are completely consistent with the formulation
given in Eqs.(51)-(55). To see this, one just make the fol-
lowing identifications:

– P space contains reaction channels
MB = πN, γN, ηN, π∆, ρN, σN and ππN

P =
∑

MB

|MB >< MB| + |ππN >< ππN | (56)

– HQQ describes the internal structure of the bare N∗

states

HQQ|N∗
i > = M0

N∗

i

|N∗
i >

Q =
∑

i

|N∗
i >< N∗

i | (57)

– HPP defines the non-resonant meson-baryon interac-
tions

HPP =
∑

MB

|MB > [
√

mB + p2 +
√

mB + k2] < MB|

+
∑

MB,M ′B′

vMB,M ′B′ +
∑

MB

[vMB,ππN + vππN,MB]

+ vππN,ππN (58)

– HQP defines the coupling of the internal structure of
N∗ with the reaction channels

HQP =
∑

N∗

[(
∑

MB

ΓN∗,MB + ΓN∗,ππN ] (59)

With some inspections, one can see that equations
presented in the section 3 of Ref.[8] (MSL model) are
completely equivalent to Eqs.(51)-(55). If we set MB =
πN, γN and Q = |∆ >< ∆|, and neglect ππN channel,
we then obtain the formulation of the SL model [11].

4.2.3 Relations with Hadron Structure Calculations

We now note that ǫs and Φs in Eq.(46) and (51) relate
the structure calculations for the unstable systems in the
Q-space and the reaction amplitudes in the P-space. In
the MSL formulation, these are the bare mass M0

N∗

i

and

wave function |N∗ > of the discrete bound states defined
by Eq.(57). These bare N∗ states can be considered as the
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excited states of the nucleon if its coupling with the reac-
tion channels is turned off. It is therefore natural to spec-
ulate that the bare N∗ states in the SL and MSL models
correspond to the predictions from a hadron model with
confinement force, such as the well-developed constituent
quark model with gluon-exchange interactions. This was
first noticed in the SL model in 1996. The idea was later
pursued in Ref.[13] in 2000 in an attempt to directly cal-
culate πN scattering amplitude in S11 up to W = 2 GeV
starting from several constituent quark models. In the
later N(e, e′N) analysis[12,79] based on SL model, the
bare γN → ∆ (1232) form factors were also found to
be close to the constituent quark model predictions. To
consider constituent quark models with meson-exchange
residual interactions, the SL and MSL models must be
modified to account for the contribution due to the contin-
uum in the Q-space; namely the effects due to the second
term in the right-hand-side of Eq.(53).

It is unlikely that the Lattice QCD calculation (LQCD)
can account for the channel coupling effects and unitarity
conditions, which are the essential elements of a dynamical
coupled-channel analysis, rigorously in the near future. It
is a challenging problem to relate the LQCD calculations
to the information which can be extracted from the full
solution Eq.(51) of a dynamical coupled-channel analysis.

One possibility is to perform a LQCD calculation which
defines aHQQ of a dynamical coupled-channel analysis. At
the present time, perhaps the predictions from a quenched
LQCD with heavy quark mass and no chiral extrapola-
tion correspond to the bare parameters resulted from the
dynamical coupled-channel analysis being performed at
EBAC. This is based on the argument that the quark-loop
contributions are suppressed at heavy quark limit and the
LQCD mainly accounts for the gluonic interactions which
are not in the P -space of MSL model.

5 Conclusion

This work was motivated by problems relating the reliable
results from partial-wave and amplitude analysis, which
are the parameters of dressed scattering matrix singulari-
ties, and the results of quark models, which are usually
given as the properties of bare resonances. Undressing
dressed scattering matrix singularities in coupled-channel
models involves model-dependent hadronic mass shifts,
which arise from the unmeasurability of off-shell effects
accompanying the dressing procedure. It is legitimate to
extract bare quantities in coupled-channel models within
the framework of a well defined model, but their inter-
pretation requires keeping track of hadronic mass shifts
produced by off-shell ambiguities. The best meeting point
between quark model predictions and analyses of exper-
imental data are dressed scattering matrix singularities,
as although dressing (un-quenching) the quark model is
complicated, it is in principle a solvable problem. This
will require careful definition and checking of the proce-
dures for extracting poles from energy-dependent partial
waves or directly from partial-wave data.
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