10,126 research outputs found

    The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction

    Full text link
    We present a structural analysis of the multi-layer graphene-4HSiC(000-1}) system using Surface X-Ray Reflectivity. We show for the first time that graphene films grown on the C-terminated (000-1}) surface have a graphene-substrate bond length that is very short (0.162nm). The measured distance rules out a weak Van der Waals interaction to the substrate and instead indicates a strong bond between the first graphene layer and the bulk as predicted by ab-initio calculations. The measurements also indicate that multi-layer graphene grows in a near turbostratic mode on this surface. This result may explain the lack of a broken graphene symmetry inferred from conduction measurements on this system [C. Berger et al., Science 312, 1191 (2006)].Comment: 9 pages with 6 figure

    Image-potential states on clean and hydrogen-covered Pd surfaces: Analysis of a one-dimensional model

    Get PDF
    Theoretical calculations in a one-dimensional model give the energies of surface states on clean and hydrogen-covered Pd surfaces in very good agreement with those measured by high-resolution electron energy-loss spectroscopy and inverse photoemission experiments. Some general properties and the applicability of this class of one-dimensional models are discussed

    Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering

    Full text link
    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at Δm21\Delta m^2 \sim 1 eV2^2. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.Comment: 10 pages, 7 figure

    A Shared Dataspace Language Supporting Larger-Scale Concurrency

    Get PDF
    Our ultimate goal is to develop the software support needed for the design, analysis, understanding, and testing of programs involving many thousands of concurrent processes running on a highly parallel multiprocessor. We are currently evaluating the use of a shared dataspace paradigm as the basis for a new programming language supporting large-scale concurrency. The language is called SDL (Shared Dataspace Language). In SDL, a content-addressable dataspace is examined and altered by concurrent processes using atomic transactions much like those in a traditional database. Associated with each process is a programmer-defined view. The view is a mechanism which allows processes to interrogate the dataspace at a level of abstraction convenient for the task they are pursuing. This paper provides an overview of the key SDL features. Small examples are used to illustrate the power and flexibility of the language. They also serve as a backdrop against which we discuss programming style implications of the shared dataspace paradigm

    CTIX Message System User\u27s Manual Version 1.0

    Get PDF
    This manual describes how to use the CTIX Message System for interprocess communication in a distributed application program. The CTIX Message System is a package of message-passing facilities developed by the Concurrent Systems Group of the Department of Computer Science at Washington University, It provides a process-to-process asynchronous, buffered communication medium. The package is implemented on a network of Convergent Technologies (CT) MiniFrame workstations. These workstations support the CTIX (the Ct\u27s version of UNIX System V) operating system and the TCP/IP network protocols

    FGFR2 amplification in colorectal adenocarcinoma

    Get PDF
    FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.</jats:p

    Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)

    Full text link
    We present energy filtered electron emission spectromicroscopy with spatial and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown by furnace annealing. Low energy electron microscopy shows that more than 80% of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides an independent measurement of the graphene thickness distribution map. The work function, measured by photoelectron emission microscopy (PEEM), varies across the surface from 4.34 to 4.50eV according to both the graphene thickness and the graphene-SiC interface chemical state. At least two SiC surface chemical states (i.e., two different SiC surface structures) are present at the graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface. K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale regions show that the Dirac point shifts as a function of graphene thickness. Novel Bragg diffraction of the Dirac cones via the superlattice formed by the commensurately rotated graphene sheets is observed. The experiments underline the importance of lateral and spectroscopic resolution on the scale of future electronic devices in order to precisely characterize the transport properties and band alignments
    corecore