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Theoretical calculations in a one-dimensional model give the energies of surface states on clean
and hydrogen-covered Pd surfaces in very good agreement with those measured by high-resolution
electron energy-loss spectroscopy and inverse photoemission experiments. Some general proper-
ties and the applicability of this class of one-dimensional models are discussed.

I. INTRODUCTION

The purpose of this paper is to analyze the underlying
physics and the properties of the one-dimensional rnod-
els used in the calculation of energies (and wave func-
tions) of the surface states on metallic surfaces, and to
apply them to specific cases of clean and H-covered Pd
surfaces.

In Sec. II we describe the general shape of a well-
known one-dimensional model potential' in order to
compare the different choices of some essential parame-
ters as used by various authors. In this context we dis-
cuss in Sec. III the possibility to determine the model
parameters uniquely from the behavior of all surface
states (crystal-induced and image-potential states), in-

cluding their shifts upon hydrogen adsorption. We also
derive a simple "scaling" rule reflecting an approximate
invariance of the energies of higher image-potential
states to the simultaneous change of the two parameters
describing the surface layer.

We apply the model to the Pd(111) surface and get the
results in good agreement with recent high-resolution
electron energy-loss spectroscopy (HREELS) measure-
ments '' for a very reasonable set of parameters. The
inverse photoemission (IP) results" ' are also dis-
cussed. Next, we study the changes induced upon ad-
sorption of hydrogen, '' the effect of which is included
in the model by increasing the attractive part of the sur-
face potential. Again the whole set of experimental re-
sults is reproduced by a shift of a single parameter by a
reasonable amount ~ Moreover, the lowest-lying state
which is located very close to the surface and appreci-
ably influenced by the details of the bulk potential,
disappears in this model, which is in agreement with the
experimental observation. The Pd(100) surface is also
briefly discussed, but with less success.

The critical discussion of the influence of all the model

parameters on the energy of surface states is performed
in Sec. IV for a well-known (111) surface of Cu. The
conclusions are given in Sec. V.

II. THE MODEL

Zl'
U(z)= Uo Uo ~0 zo &z &

Zl ~

(2)

The second choice, z,*, in (2) corresponds to the case
where Up is a potential constant all the way to its cross-
ing with the image potential in the outside region (Fig.
1).

U(z) =— e2

4(z —z, )

z, , classical image potential
z&'

z,*, truncated image potential .

This general form of the potential has been specialized
by different choices of boundaries in different papers.

The most general version of the one-dimensional mod-
el potential that explains the existence of surface states
on metallic surfaces is divided into three regions, and
is shown in Fig. 1. The bulk potential in the form

U(z)= —Vo+2VGcos(Gz+tz), Vo, VG ~0, z &zo

is terminated at some point zp. The origin z =0 will be
fixed at the position of the last atomic layer, where we
assume that U(z) has a maximum value. ' It gives
+=0 and 0 &z, &z, where z =a/2 is the "jellium
edge. " G =2m/a is the reciprocal-lattice vector and a is
the (one-dimensional) direct lattice vector. The potential
in the surface region zp &z &z, is modeled by a constant
potential Up which is an adjustable parameter, together
with the "image-plane" position z, :

36 9500 1987 The American Physical Society



36 IMAGE-POTENTIAL STATES ON CLEAN AND HYDROGEN-. . . 9501

-3 -Q -2

-Vp -2Y(;

U (BV)

0

2 Q
I i I

Z Z) Z

I -U0,

/

/

/

I

f

I I

z (Aj

tron states, i.e., surface states.
The solutions of the Schrodinger equation in the three

regions are

C, e~'cos(pz+5), z &zo

f(z)= C2cos(trz+Pp) zo &z &z ol z;"

C, W, (p), z)z, orz,*.
Inside the solid (z &zo) we have taken the solution in the
nearly-free-electron (NFE) approximation. The potential
U(z) opens the gap in the band structure at the
Brillouin-zone edge where the wave vector k, becomes
complex:

k, =p —iq, p = —,'G, q &0 .

FIG. 1. The model potential. The bulk parameters
( Vo, VG, a ) correspond to the L gap in Pd and the [111]direc-
tion. Note that the potential may generally have a discontinui-
ty at zo, depending on the parameters zo and Uo.

We assume that G is along the surface normal. The pa-
rameters (q, 5) in the wave function (5) are determined
from the relations

Eq (4Eoe+ V——
G

)' —(E+EG ), (6a)

Smith, for example, takes the classical image potential
and sets z, =zz, i.e., the image plane is at the jeHium
edge. Then he makes two alternative choices: zp =z,. or
zp ——0, where the second choice gives better results. The
potential in the surface region is equal to the average
bulk potential: Up= Vp so this model has no adjustable
parameters.

Weinert et al. take zo ——0, choose Uo ——Vo —2Vo (top
of the bulk potential), and extend Uo to z,*, which is
then treated as an adjustable parameter.

Ortuno and Echenique choose zp ——a/2, i.e., at the
jellium edge, with the flat region Up = Vp or
Up = Vp + VG extended to join the truncated potential at
the point z,*. This point z,* (or equivalent z, ) is then
varied to obtain agreement with experiments. In Sec. IV
we shaH discuss the crucia1 role of the zp parameter,
showing that the wrong choice of zp cannot be corrected
by any variation of Up or z, .

In order to find the electronic wave functions and en-
ergies in one of these potentials, we shall use the phase
accumulation method. ' ' This method is equivalent to
the wave-function matching in the case of the truncated
potential.

The electronic wave function in the vicinity of the
high-symmetry points of the surface Brillouin
zone ' ' factorizes into

%(r) =e' ~f(z) .

The Schrodinger equation becomes

d + U(z) g(z) =Eg(z),
2m' dz

tan(25) =— pq/( E EG+Eq—) . (6b)

Here c=E+Vp is the electron energy in the inner po-
tentia1 Vp, and

which gives the lowest possible value for E, i.e.,
E & —Up.

In the outside region the wave functions are Whittaker
functions, which are the solutions of

E =,q, EG —— , p2m* 2m

The gap width is 2VG and the center of the gap is at
EG Vp. AH energies are measured from the vacuum
level E„„=O. If the top of the gap is above E„„asfor
the L gap in Pd(111), an infinite number of Rydberg
states can exist near E„„contrary to the situation, e.g. ,
for Cu(111), where the whole L gap is below E„„and
where only a part of Rydberg series can exist as sharp
states.

The phase shift 6 varies from —~/2 to 0 when E
varies from the bottom to the top of the gap. The pa-
rameter q is equal to zero at both gap edges. Outside
the gap we assume q =0. The solutions can be found in
that energy region as well, but in this one-dimensional
model they propagate in the bulk without damping. Ob-
viously, they are not true surface states' but in a proper
calculation they turn out to be surface resonances.

In the J7at potential region (zo &z &z, or z,*) the wave
vector ~ is de6ned as

1/2

, ( Uo+E)

and the total energy is

AKE =E+
2m

((

(4)

where

d v
2+

p
W (p)=0,

Here K is the wave-vector component along the surface,
and E & 0 is the perpendicular energy of the bound elec- p=(z —z, )/(2aov), ao fi /me2, ——
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and we have defined 2= —~(v ——') .
2 (10)

1 1 e v) 0
32 ~ ao

The lowest energy level (v& 1) exists even if we replace
the image potential by the step potential, and is usually
called the crystal-induced or Shockley-inverted state.
The higher-order levels exist due to the long (Coulombic)
image-potential tail, and are called image-potential
states.

The free-electron mass m has been replaced by m~ and

m~I for the electron motion perpendicular and parallel to
the surface, respectively. We assume m~ =m for z &zo,
but for z &zo we take m~=m', where m' represents
the electron effective mass in the crystal. In this way we
have, in the two-band (NFE) model, effectively taken
into account the inhuence of other bands.

On the other hand, the energies of surface states
disperse as a function of K, described by the free-
electron-like parabola (4) with the effective mass m

~~.

However, for a given surface state, m
~~

depends upon the
energy position of this state E„((E=0)=E in the
gap. ' ' For the theoretical discussion in the present
paper, the parameter rn~j is not important, but the direct
comparison .with experiment is possible only if the exper-
imental energies are measured at K =0. If this is not
the case, one has to use Eq. (4) to find E from E„„and
the knowledge of m

~~

becomes essential.

A. Phase accumulation model

In the Oat potential region zo &z &z,- or z,*, the elec-
tronic wave function (5) can be represented in terms of
the phase shifts P( and (t2 which correspond to the per-
fect electron reflection on the surface (z =zo) and the
image-potential barrier (z =z, or z;*), respectively:

—iK(z —zo ) 2i p& i K(Z —Zo )

A)(e ' +e 'e )

P(z): i~(z z. ) —2ip —tv(z —z )

A2(e '+e 'e '
) .

The bound states are given by the condition

For fixed z, ,zo, Eq. (8) give the discrete energy levels
which are denoted uniquely by the quantum number
n =0, 1,2, . . . . The n =0 denotes the crystal-induced
state, while n = 1,2, . . . denotes the image-potential
states. In the following we shall calculate the v„(z, )

dependence for the few lowest n values, using both the
exact phase (9b) and the approximate WKB phase (10),
with the following parameters: for the solid; 6, E~, VG,
and m *

( Vo =EG —VG —Es ), and for the surface region,
Uo, zo, and z; (z,*=z, +e /4Uo). Here Es denotes the
bottom of the energy gap.

III, DETERMINATION OF Uo SENSITIVITY
OF THE MODEL

We shall first discuss surfaces states on palladium sur-
faces. The energies of surface states are measured for
the clean and H-covered Pd surfaces, ' and we shall
try to explain the observed energy shifts.

A. Clean Pd(111) surface

The L 2L, gap in bulk Pd is opened by the Cx vector
perpendicular to the (111) plane of the solid. It occurs
at I on Pd(111), so in this respect the one-dimensional
model is justified. The parameters appropriate for
the [111]direction in Pd are a =2.24 A, G =2.80 A
EG ——7.48(m/m*) eV. The parameters for the Pd L gap
are VG ——3.3 eV and Ez ———4. 6 eV. Fitting the
dispersion curve for the I L direction to a free-
electron-like parabola (NFE model), we obtain
m*/m =0.7, which gives EG ——10.7 eV and V0=12.0
eV.

In the truncated image-potential model, for the pa-
0

rameters zo ——0, Uo ——5.5 eV, and z, =2. 1 A, we obtain
in a set of eigenenergies [Fig. 2(a), Table I]

E = —3.7, —0.72, —0.22, —0.096 eV

TABLE I. Calculated and measured energies of surface
states on Pd(111) (all values in eV).

(F2
—(t) =K(z, —zo)+me. , m =0, 1,2, . . .

where the first term on the right-hand side is the phase
shift accumulated in the constant potential region.

The phases P) and (t 2 have to be determined by

matching the logarithmic derivatives of the wave func-
tions at the boundaries, with the result

State

Uo ——5.4 eV
z; =2. 1 A

U() ——9.0 eV
I 0

z; =z; =1.5 A

Crystal
induced

—3.7

—4.9

n =1
—0.72

—0.76

n =2
—0.22

—0.22

n =3
—0.096

—0.096

K tan(ti( = —q +p tan(5+pzo )

K tan/2 = — ln W, (p )/(2aov)
~

d

dp P=P

where

p* =(z,*—z, )/(2aov) .

(9a)

(9b)

H REELS
Inverse PE'

Uo ——9 eV
z; =2. 1 A

Uo ——15 eV
0z;=1.5 A

—6.1

—4.3

—6.0

—9.1

—0.75
—0.56

—1.4

—1.5

—0.25

—0.33

—0.33

—0.13

—0.13

The phase shift (tz for the classical image potential
(matching at z, ) in the Wentzel-Kramers-Brillouin
(WKB) approximation takes the simple form

HREELS
Pd(111)/H

'Reference 13.

below bottom
of gap

—1.25 —0.33
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in very good agreement with HREELS results for the
first and second states of Pd(111): ' '

E = —0.75, —0.25 eV .

Figure 2(a) also shows the curves v(z; ) for the classical

(a)

3.0—

image potential, with the approximation (10). The two
procedures do not differ very much except for the lowest
state, which is strongly localized in the region between z,
and zo in the classical case. Figure 2(b) gives the same
results in terms of binding energies versus z, .

The choice of Up is obviously not unique. It would be
equally physically justified to choose any value of —Up
in the range between Vp+ 2 VG = —5.4 eV and
—Vp —2VG = —18.6, so one may want to discuss the
consequences of these possible choices. For instance,
taking —Up ———9.0 eV and shifting z, to z,'=1.5 A
gives the sequence of energy levels

2.5— Up E = —4.9, —0.76, —0.22, —0.096 eV .

(b)

2.0

1.5—

0.5—

E = -0.85&V

—Up
Up'

v= 3

Up'

Up

Up'

Up

Up'

Up

Up'

Up

There is a noticeable difference only for the lowest level,
which could therefore serve to determine the proper
value of Up. However, since the experiments give the
energy of this level close to the bottom of the gap, ' its
dispersion may become a separate question. For the oth-
er levels, we notice the "scaling" connection between the
optimal values for the parameters Up, z, and Up, z,':

1/2
p

(12)zt ~

Up

This simple rule is valid for energies
~

E && Uo, and is
derived in the Appendix.

Figure 2(a) shows indeed that the curves v(z, ) for
Up ——5.4 and 9.0 eV are approximately parallel
(uniformly shifted) for

~

E
~

&& Uo. In other words, for
each Up we can find a corresponding z; which gives a
good sequence of energy levels.

For E~—Up the curves bend, which leads to strong
differences in the lowest-level energies for different Up.

The energy levels (11) are obtained by extrapolating
the HREELS data from M to I with m

~~

——m. This pro-
cedure is expected to be correct for the image-potential
states, but gives E = —6. 1 eV for the crystal-induced
state. '

The IP data for Pd(111) are somewhat different: the
two lowest surface states (measured close to I ) are'

E(8V) E = —4. 3, —0.56 eV . (13)

Up

3

Up

. . 8 ' x
' ',''i''i iXViX",hag%&'g9'xiiX Nx iiXV, .'i i:ix ill�"iXXx'. . . . . . .' . ... , i,

FIG. 2. v(z, ) curves (a) and E(z;) curves (b) for Pd(111)
crystal-induced and image-potential states. The truncated
(solid lines) and classical image (dashed lines) solutions are
given for two Up values, with zp =0. Denoted are the values of
the parameters z; and z,

' that we have chosen to explain the ex-
perimental values.

We can reproduce those data exactly if we take z,
=a/2=1. 1 A (with UO=9. 0 eV). Let us notice that in
Ref. 13 mz ——m was assumed, which put the maximum
( —Vo+2VG ) of the bulk potential very close, 2 eV
below the vacuum level. Therefore only a large shift of
Uo from Vo —2VG gives the correct energies (13).

If we require that the HREELS data (at M) corre-
spond to the IP data (at I ), we must take m~~

——0.73m
for the crystal-induced state and m

~~

——0.97 for the (first)
image-potential state. While for the image-potential
states m~~

——m is consistent with both HREELS and IP
data, the IP measurements give a rather low value
m

~~

——0.35m for the crystal-induced state. '

1. Electronic waue functions

Figures 3(a) and 3(b) show the electronic wave func-
tions (5) of the three lowest states, calculated with the
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C2 ——W„(p* )/cosPz,

C3 Cpcosg
& /[ e 'cos(pzo + fi ) ]

B. Adsorption of hydrogen

Hydrogen is adsorbed somewhere in the region
0 &z &z, , so we expect it to lead to the following

u, -so, v

z, =1.5A

V(z)

0.8-

-8 &4i z(A)

- -0.8
Zi Zi

n=0, v=042
n=1, v=1.06
n=2, v=1.98

parameters Up ——5.4 eV, z, =2. 1 A and Up ——9.0 eV,
0

z, = 1.5 A, respectively. In both cases the results are
very similar, with the deviation for the lowest state,
which is visible also in the eigenenergies, as discussed be-
fore. Particularly, the n =0 state is shown as a surface
state (E &Es ) in Fig. 3(a), and as a surface resonance
(E &Ez ) in Fig. 3(b) as discussed before.

In Fig. 3 the wave functions are not normalized: we
have taken the %'hittaker-function coe%cient C, =1, and
the other two coefFicients are

I

(
UI )1/2 ( U )1/2 6 13

v v
( Vl/2)

z, (A)
(14)

The derivation is given in the Appendix, assuming
/E'/ «U,'.

A certain shift 6 Up = Up —Up leads to a uniform
downward shift Av of all image-potential states. The en-
ergies are also lowered, but the lowest (crystal-induced)
state is shifted most. If its energy was close to the bot-
tom of the gap on the clean surface, H adsorption may
push it below and it may vanish —as is indeed the case
with Pd. Let us notice that the crystal-induced state
usually does not satisfy the condition

~

E'
~

&&Uo, and
therefore its energy shift will not obey Eq. (14) closely.

Experimentally observed energies of image-potential
states for Pd(111)/H are '

E'= —1.25, —0.33 eV .

modification of the effective potential.
(1) The bulk potential ( Vo, VG ) does not change for

z &0.
(2) The vacuum potential (z ~z, ) does not change-

the image-plane position stays as for the clean surface,
and we neglect the influence of the small work-function
change on the value of the inner potential Vp.

(3) The effect of adsorbed hydrogen is expected to lead
to a more attractive potential in the surface region
0&z &z, . This increase of Vp will be shown to lead to
the changes in the image-state energies, as was observed
experimentally. '

The shift Uo~ Uo (with z, fixed) is connected with the
energy shift E~E', i.e., v~v', through a simple rela-
tion

Up = 9.0eV
z; =2.1 A

V(z)
The shifts for Pd(111)~Pd/H are v —v'=0. 24 for

both n =2 and n =3 states, so for a given Up from Eq.
(14) we can calculate Uo and test the validity of the
model. Let us do that with the two sets of parameters:

(a) U„=5.4 eV~ Uo ——9.0 eV, z, =2. 1 A

2) Zi

I I

8 z(Aj

n=0, v=037
————- n=1 v=075J""- n=2, v = 162

or

(b) Uo ——9.0 eV~ Uo ——15.0 eV, z, = 1.5 A

The resulting electronic energies are

(a) E'= —6.0, —1.4, —0.33, and —0. 13 eV,

(b) E'= —9. 1, —1.5, —0.33, and —0. 13 eV .
(c)

Up = 5.4eV
z; =2.1 A

V(z)

0.8-

.. 'R
-'5 ~i-'I. ~*'. '

z(A)

- -0.8
Zi zi

n =0, v =049
n=1, v=109
n=2, v=1.98

FIG. 3. The wave functions of the three lowest surface
states on Pd(111) surface. We take zo ——0 for all curves.

Again the difference is seen only in the lowest-energy
state, which is now, in both cases, deep below the bot-
tom of the gap.

Figure 2(a) shows the v and v' values for Pd(111) and
Pd(111)/H with the (a) parameters, while Fig. 2(b) shows
the E and E' values for Pd(111) and Pd(111)/H with the
(b) parameters.

Figure 3(c) shows the wave functions calculated with
the shifted (a) parameters Uo =9.0 eV, z, =2. 1 A; it is
clearly seen that the image-potential states on Pd/H are
more localized near the surface than on clean Pd [Fig.
3(a)], while the n =0 surface state becomes the n =0
surface resonance.
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C. Pd(100) surface

Experimental values for the clean Pd(100) surface
are' E = —0.95, —0. 19 eV, which corresponds to
v=0. 95, 2.1. These results are not far from the Rydberg
series v=1, 2, 3, . . . , and could be reproduced easily for
any reasonable model potential (1).

Experimental values for Pd(100)/H are' E'= —2.0,
—0.72, —0.22 eV, i.e., v'=0. 65, 1.1, 1.9.

If we assume that the first excited surface state is
shifted due to H adsorption, we obtain hv
=2. 1 —1.1=1.0, which is a large shift. Namely, the
equation (14) can be satisfied for large b, v either with
small Uo or with large z, .

The two lowest levels v'=0. 65 and 1.1 are very close,
which can be reproduced if the lowest-level curve v'(z, )

is strongly bent [Fig. 2(a)]. For the lowest level this
gives

~

E'
~

= Uo and therefore Uo S4 eV. This in turn
implies that Uo 52 eV, which is a rather strong assump-
tion.

In other words, the experimental results for Pd(100)
and Pd(100)/H surface states can be reproduced in the
present model, but with a rather unlikely choice of pa-
rameters (Uo, Uo). At this point we should stress the
following.

(i) The surface-state energies for Pd(100) and
Pd(100)/H are obtained by extrapolating the HREELS
experimental data from X to I with m

II

——m, wh ch
might not be correct (especially for the crystal-induced
state).

(ii) The validity of the one-dimensional model is rather
questionable for the Pd(100) surface, since the projected
Pd bulk band structure onto I -X direction in the second
Brillouin zone (where the experimental values of K fall)
has not been calculated. Therefore we cannot analyze
the width and the position of the gap and its dispersion
which are the essential criteria for the validity of the
one-dimensional model.

as in the case with the Cu(111) surface. The measured
energies are Eo= —5.33 eV and E, = —0.90 eV.
In principle, these energies are functions of three param-
eters:

Eo ——Eo(zo, Uo, z, ),
E, =E, (z oUo, z;) .

Taking Eo and E, from experiments, we can determine
two of the parameters:

Uo=Uo(zo Eo Ei)
z;=z;(zo Zo Ei)

as functions of the bulk edge position zo. The actual cal-
culation is done iteratively, and the curves Uo(zo) and

z, (zo ) are shown in Fig. 4. It explains, e.g. , the
difficulties of Ortuno and Echenique, who took
zo ——0.5a, and therefore could not find a z, value that
gives exactly both Eo, E& values, neither with Uo= Vo
nor with Uo= Vo —VG. Similarly, Weinert et al. chose
zo =0, but with Uo = Vo —2VG they also could not ob-
tain exact Eo, E, values.

The most interesting feature on Fig. 4 is the constant
value of z, for all calculated zo values. This means that

0

the present model indicates the value of z, =1.27 A for
the Cu(111) surface, regardless of zo and Uo. It places

0
the image plane 0.2 A outside the jellium edge, which is
quite a reasonable result.

Zp{A)

IV. ANALYSIS OF zp SENSITIVITY
OF THE MODEL

ZJ

Up to this point we have demonstrated, using the
Pd(111) surface as an example, the influence of the mod-
el parameters Uo and z, on the energies of the surface
states. The parameter zo which describes the bulk edge
remains constant (zo =0). However, in principle we
could take a realistic value for zo anywhere in the inter-
val 0&zo &z =a/2, so, in general, in the present model,
the energy of a surface state is a function of three pa-
rameters (Uo, zo, z, ). On the other hand, only the two
lowest states are sensitive to the particular choice of
these "surface" parameters, since their wave functions
are localized close to the surface (Fig. 3). The wave
functions of the higher states have their maxima in the
classical imagelike tail of the potential, and therefore
their energies follow closely the Rydberg series, indepen-
dent of Uo, zo, z, .

To discuss more precisely the inhuence of all "sur-
face" parameters we must find a case where the energies
of two lowest surface states have been determined at I,

-9-

-Vo+ VG

FIG. 4. Up(zp ) and z; (zp ) curves that fit the two surface
states in the L gap of Cu. The bulk parameters are (Ref. 6)
Vp ——13.54 eV, V& ——2. 55 eV, a =2.08 A.
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V. CONCLUSIONS

In this paper we have analyzed some properties of the
one-dimensional matching models of the crystal-induced
and image-potential states on clean and hydrogen-
covered transition-metal surfaces. In particular, we have
applied it successfully to the Pd(111) surface where all
the states were described by a single choice of parame-
ters. The hydrogen adsorption was assumed to lead to
an increase of the attractive Up potential, and a reason-
able shift of Up again provided good agreement with ex-
perimentally observed energies. This model also qualita-
tively explained the disappearance of the lowest state,
which was, upon H adsorption, pushed far below the
gap. A new H-induced (and dispersionless) state appears
and is experimentally observed, ' but its analysis is out-
side the framework of the present theory.

For the Pd(100) surface we do not have all the neces-
sary input parameters of the band structure to perform
the relevant calculations, but our analysis shows that a
one-dimensional model might not be adequate.

Our analysis explicitly demonstrates the "scaling"
properties of the model, i.e., the experimental data for
energies of image-potential states can be explained by
different choices of Up z zp values. Usually, zp is tak-
en as a fixed parameter, but it seems physically more
reasonable to vary the local surface-sensitive quantity zp
than the image-plane position z, , which essentially
rejects a property of the bulk metallic electrons. Al-
though the one-dimensional model might appear too
crude to predict the position of z, , in the case of the
Cu(111) surface we have found that z, = 1.27 A yields
reasonable results, independent of the set of zp Up pa-
rameters chosen to fit both the crystal-induced and
image-potential surface states.

APPENDIX

We shall derive two simple and useful rules (12) and
(14), starting from the phase matching rule (8). For
( Up z, v) ~ ( Up, z,', v' ), we obtain Pz —P't ——v'z, ' + n m'.

The phase change Pz —Pz is much greater than the phase
change PI —P„so the total phase change is approxi-
mately given by

b,P =Pz —$2=sr(v —v') =z'z, ' —zz, (Al)

Here we have also used the WIN B approximation (10) for
b,Pz, since we have shown that it reproduces reasonably
well the truncated curves v(z, ) [Fig. 2(a)].

(i) Let us assume that the energies remain constant:
v=v'. From (Al)

K zi Kzi& v v (A2)

Except eventually for the lowest surface state, we can as-
sume

IE'
I
«Up (A3)

and approximate a. =(2mUp/A' )', a'=(2mUp/fi )'
which inserted into Eq. (A2) immediately leads to Eq.
(12).

(ii) Let us assume that the image plane is not shifted:
z, =z . With the assumption (A3) we find from Eq. (Al)

I

(U. )
/2 (U )1/ ( — )

(e 0 )
/

U'2 (z, —zp)

which leads to Eq. (14).
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