View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-09

1988-03-01

A Shared Dataspace Language Supporting Larger-Scale
Concurrency

Gruia-Catalin Roman, H. Conrad Cunningham, and Michael E. Ehlers

Our ultimate goal is to develop the software support needed for the design, analysis,
understanding, and testing of programs involving many thousands of concurrent processes
running on a highly parallel multiprocessor. We are currently evaluating the use of a shared
dataspace paradigm as the basis for a new programming language supporting large-scale
concurrency. The language is called SDL (Shared Dataspace Language). In SDL, a content-
addressable dataspace is examined and altered by concurrent processes using atomic
transactions much like those in a traditional database. Associated with each process is a
programmer-defined view. The view is a mechanism which allows processes... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin; Cunningham, H. Conrad; and Ehlers, Michael E., "A Shared Dataspace Language
Supporting Larger-Scale Concurrency" Report Number: WUCS-88-09 (1988). All Computer Science and
Engineering Research.

https://openscholarship.wustl.edu/cse_research/766

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/766?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/766

A Shared Dataspace Language Supporting Larger-Scale Concurrency

Gruia-Catalin Roman, H. Conrad Cunningham, and Michael E. Ehlers

Complete Abstract:

Our ultimate goal is to develop the software support needed for the design, analysis, understanding, and
testing of programs involving many thousands of concurrent processes running on a highly parallel
multiprocessor. We are currently evaluating the use of a shared dataspace paradigm as the basis for a
new programming language supporting large-scale concurrency. The language is called SDL (Shared
Dataspace Language). In SDL, a content-addressable dataspace is examined and altered by concurrent
processes using atomic transactions much like those in a traditional database. Associated with each
process is a programmer-defined view. The view is a mechanism which allows processes to interrogate
the dataspace at a level of abstraction convenient for the task they are pursuing. This paper provides an
overview of the key SDL features. Small examples are used to illustrate the power and flexibility of the
language. They also serve as a backdrop against which we discuss programming style implications of the
shared dataspace paradigm.

https://openscholarship.wustl.edu/cse_research/766?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/766?utm_source=openscholarship.wustl.edu%2Fcse_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages

A SHARED DATASPACE LANGUAGE SUPPORTING
LARGE-SCALE CONCURRENCY

Gruia-Catalin Roman, H. Conrad Cunningham
and Michael E. Ehlers

WUCS-88-09

March 1988

Department of Computer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

To appear in Proceedings of the 8th International Conference on Distributed Computing Systems, IEEE,
San Jose, June 1988.

A SHARED DATASPACE LANGUAGE
SUPPORTING LARGE-SCALE CONCURRENCY

Gruia-Catalin Roman, H. Conrad Cunningham, and Michael E. Ehlers

Department of Computer Science

WASHINGTON UNIVERSITY
Saint Louis, Missouri 63130

ABSTRACT

Our ultimate goal is to develop the software
support needed for the design, analysis, under-
standing, and testing of programs involving many
thousands of comcurrent processes rTunming on a
highly parallel multiprocessor, We are currently
evaluating the use of a shared dataspace paradigm
as the basis for a new programming language
supporting large-scale coneurrency. The language
is called SDL (Shared Dataspace Language). In
SDL, a content-addressable dataspace is examined
and altered by concurrent processes using atomic
transactions much like those in a traditional
database. Associated with each process is a
programiner-defined wview, The view is a
mechanism which allows processes to interrogate
the dataspace at a level of abstraction convenient
for the task they are pursuing. This paper
provides an overview of the key SDL {eatures.
Small examples are used to illustrate the power
and fexibility of the language. They also serve as
a backdrop against which we discuss programming
style implHcations of the shared dataspace
paradigm.

1. INTRODUCTION

In recent years multiprocessors consisting of
thousands of tightly-coupled processors have
become 2 reality and current technological and
market trends suggest that multiprocessors will
become commonplace in many computing
environments. Nevertheless, the availability of
such powerful machines is only the first step
toward meeting the ever-increasing user needs for
computational resources. The next step is the
development of languages and environments that
will enable the user to harness the raw power of
these machines in 2 cost-effective manner. This is
a difficult problem that must address both coltural
and techmical concerns. At a cultural level,
appropriate training, skills, and experience are
missing. At the technical level, concurrent
programs consisting of thousands of processes
present the programmer with unprecedented
degrees of complexity which are further
exacerbated by our limited capacity to reason

about concurrent computation and to predict the
performance of complex programs executing on
highly paralle] multiprocessors.

Breaking the software barrier requires
researchers to reevaluate their current thinking
about concurrency, from basic models to languages
and environments. Ways must be found to cope
with the complexities of lerge-scale concurrency,
i.e, computations that require the cooperation of
many thousands of (not necessarily identical)
processes executing on a highly parallel
multiprocessor. Our own efforts in this area have
been directed toward evaluating the shared
dataspace paradigm as the basis for a language
supporting the specification and visualization of
large-scale concurrent computations.

The shared dataspece paredigm covers
languages in which processes have access to a
common, contenf-addressable data structure
(typically a set of tuples) whose components may
be asserted, read, and retracted. Associons®,
Linda!, and OPS83* represent three distinct
instantiations of this paradigm. Gelernter's work
on Linda has shown the paradigm's viability for
large scale concurrency. However, he uses the term
generative commaunication® to refer to this
paradigm, but we find the term shared dafaspace to
be more explicit. It suggests an analogy with the
shared variables mechanism and also alludes to the
incorporation of database concepts into the
programming language.

Our own attemnpt to experiment with the
application of the shared dataspace paradigm to
large-scale concurrency has led to a language
proposal called SDL (Shared Dataspace Lenguage),
SDL shares with Associons and Linda the use of
tuples to represent the dataspace. In SDIL,
however, the dataspace is examined and altered by
concurrent processes using atomic transactions
much like those in a traditional database but
exhibiting =a richer set of operational modes
specifically designed for support of large-scaie
concurrency. Associons use the closure statement,
which is very powerful and has high potential for
concurrency but is intended for use in what might
be considered a single explicit process environment.
Linda provides processes with very simple
dataspace access primitives (read, assert, and
retrack ome tuple at a time). Another

distinguishing feature, unique to SDL, is the
availability of programmer-defined process views.
The view is a powerful mechanism which supports
an abstract notion of locality and provides a way
by which structure may be introduced into the
tuple-based dataspace. More importantly, it
allows processes to interrogate the dataspace at a
level of abstraction convenient for the task they
are pursuing. To the best of our knowledge, this
kind of relatfvisiic abstraction mechanism has
never been explored before. Its advantages over
the fixed encapsulation mechanisms available in
modern languages are self-evident.

The objective of this paper is to provide the
reader with an introduction to the shared
dataspace paradigm and its implications on
programming style. SDL is the vehicle by which
we do this. Section 2 contains an overview of the
key SDL features. In Section 3, small examples are
used to illustrate the power and flexibility of the
language. They also serve as a backdrop against
which we discuss programming style implications
of the shared dataspace paradigm. Brief
concluding remarks are part of Section 4.

2. LANGUAGE OVERVIEW

For the sake of simplicity, examples given in
this paper do not use the full power of SDL. As
such, this section presents a simplified version of
SDL. Some concepts are omitted and others are
explained only to the extent to which they are
being used in Section 3. For a more complete
definition of the language and discussion of other
topics related to SDL such as program
visualization, the reader is directed to a recently
published companion paper?.

In SDL, computation is described in terms of
» dataspace and a process society. The defespace
is a set of tuples. The process socfety is a set of
processes. Both the dataspace and the process
society undergo continuous change. Tuples are
asserted, examined, and retracted by processes.
Each tuple is owned by the process that asserted it
and the owner may be determined by examining
the unique tuple identifier associated with each
tuple. Typically, tuple identifiers are ignored by
application programs but are of interest during
debugging and testing. Tuples may be
manipulated by any process and can survive the
termination of the creating process. Processes, in
turn, are created by other processes, manipulate
tuples, and terminate on their own.

The interactions between processes and the
dataspace take place via fransactions issued by
individual processes. At a logical level, all
transactions are atomic, i.e., transactions appear
to execute serially and either succeed or have mo
effect on the dataspace. In general, transaction

execution involves four subactions: 2 query
evaluation over the dataspace, the retraction of
selected tuples specified in the query, the assertion
of new tuples, and local actions affecting the
control state of the issuing process. Individual
processes may initiate concurrent evazluation of
multiple transactions with the intent of
committing only one of them or may issue an
unbounded number of concurrently executing
transactions. Consistent with the notion of
process/data decoupling, most transactions are
independent of the process society state. However,
there are instances where coordinated transaction
execution by a set of cooperating processes is
necessary, especially to maintain clarity in the
program. This type of action is represented by a
novel transaction type, called a consensus
transaction, in which several processes perform
simulianecus transformations on the dataspace
with the composite of these transformations being
a single transaction,

A view is associated with each process. The
view specifies a window which, like the dataspace,
is a set of tuples. The window, however, is
computed only at the start of a transaction and is
discarded as soon as the transaction commits. The
tuples in the dataspace are mapped into the
window using the import component of the view.
Transactions act upon the window as if it
represented the whole dataspace. Refractions of
tuples in the window are translated to
corresponding retractions in the dataspace in
accordance with the import rules. The export part
of the view maps tuples asserted in the window to
new tuples in the dataspace. Conceptually, the
view allows programmers to consider the dataspace
at a level of abstraction that matches the
processing requirements of a particular process.
This leads to both clarity and brevity.
Pragmatically, the view also provides bounds on
the scope of the transactions which, in turn, reduce
the fransaction execution time., Thus, transaction
types that might be expensive to implement may
be used comfortably when the number of tuples
they examine is small.

2.1. Dataspace and View

The dataspace D is defined as a finite but
large multiset of tuples where each tuple ¢ is a
sequence of values from some domain V (eg,
atoms and integers). At the meta level, we will
denote tuples as finite sequences of symbols as in

<year,87>

The dataspace is examined and modified by
transactions. However, a process restricts the
transactions it issues from operating on the
dataspace directly. Invisible to the transaction,

the dataspace is replaced by a window W on which
the transaction is evaluated. The transaction
computes a refraction window Wr and an asserifon
window Ws which are used to update the
dataspace.

The window is an abstraction of the
dataspace relative to a particular process’ needs,
The abstraction mechanism is the wiew which
defines both the abstraction rule and the way in
which changes to the window are mapped back to
corresponding changes in the dataspace. In its
simplest form, a view may be characterized by two
sets called Import and Ezport. The import set of a
process p is the set of all tuples which p eould
query and retract, if they exist in the current
dataspace configuration. The export set of p is the
set of all tuples which p is allowed to add to the
dataspace. Given a particular dataspace
configuration D, a process p, and a transaction r,
the new dataspace configuration ¥ is computed as
follows:

W = Impori(p} N D
{Wr, Wa) = #(W)
D' = ((D — Wr) U {Ezport(p) N Wa))

In SDL, simple views such as these can be
defined by using import/export statements
consisting of tuples containing constants, wildeard
markers (‘*'), and bound variables. Given a
process p, a view such as

IMPORT
o | @<87 =2 (year,a)
EXPORT
(year,*)
defines

Import(p) = { <year,a> | €V and a<87 }
Ezpori(p) = { <year,a> | a€V'}

(Note: We wuse Greek letters for quantified
variables, lower-case letters and numbers for
constants, and upper-case letters for named
constants),

2.2. Transactions

Dataspace membership testing, tuple
retraction, and tuple assertion are the simplest
SDL transactions. The membership test takes the
form

[year,87]

This transaction is evaluated only once and must
either succeed or fail depending upon whether the
query evaluates to true or false. In a particular
context, its success or failure may be used to alter
the state of the process issuing the transaction;
otherwise, it has no effect on the dataspace. To
retract a tuple, one simply tags it (in the query) by

3.

a . The transaction
[year 87}t

follows the membership test by the removal of the
tuple. Note that retracting one instance of a tuple
may leave other instances of it in the dataspace.
To assert a tuple one can use a transaction such as

(year,87)

More complex queries may be formed by
composing predicates using negation (‘=)
conjunction (',”), disjunction (‘or’), and parentheses.
The general form of 2 transaction is

transaction =
query
transaction_type_tag
acifon_list

query ==
quantifier
variable st :
binding_query =
tesi_guery

quantifier =¥ |3
transaction_type_tag = — | > [11

where the transaction_type_tag determines some of
the operational characteristics of the transaction.

Immediate transactions are tagged by ‘—', as
in the transaction

3 a: [year,a]t : a>87 — let N=a, (found, a)

The operational interpretation here is as follows,
First, the binding_query is evaluated in an attempt
to find a tuple of the form <year,*>. If the tuple
<year,90> is found, the test query is initiated
with o bound to 90. Since 90 is greater than 87,
the query succeeds leaving o bound to 90 and the
tuple <year, 80> tagged for retraction. Next, the
tuple is retracted. In the action_list, N is defined
t0 be the constant 90 and the tuple <found, 90> is
added to the dataspace. Logically all these steps
represent a single atomic transformation of the
dataspace. The transaction would have failed if,
at the time the query was evaluated, the dataspace
contained no tuple of the form <year*> with a
number greater than 87 in the second position.
Delayed transactions, tagged by ‘>-', differ
from immediate transactions in that, instead of
failing, they block the process until a successful
evaluation is possible. The delayed transaction

3@ : [year,a] : @>87 > (new_year)

is not executed until the dataspace contains a
tuple of the form <year,*> with the second feld
greater than 87. However, a delayed transaction is
not guaranteed to detect the first instance when
the dataspace allows it to be successful. As far as
fairness is concerned, we assume only that, if a

delayed transaction is issued and remains enabled
indefinitely, the transaction is eventually executed.

Consensus transections. Central to the
shared dataspace paradigm is the notion of
process/process and process/data decoupling. The
transactions intreduced so far are consistent with
this principle. Transaction execution involves only
the dataspace; it is independent of the state of the
process society. However, the very fact that
processes cooperate in solving a given task, leads
naturzlly to cases where processes in a particular
community must reach some common agreement,
le, a consensus, before further processing
anywhere in the community may proceed. This
kind of situation occurs frequently in concurrent
brograms and in jmplementations of concurrent
languages. Program termination in the UNITY
model®, task termination in Ada, the simulation of
clocked systems, and the exit from a cobegin-coend
block in some conecurrent languages involve various
forms of multiparty consensus, Actually, the two-
way synchronization commonly used in many
concurrent languages, such as CSP?, is nothing
more than a special case of the more general
notion of consensus.

Qur solution to consensus problems is to
provide in SDL a specialized and powerful
transaction type called a consensus transection. In
its simplest form, the consensus is an explicit n-
way synchronization among processes that are
members of the same consensus set. A consensus
set is defined as a set of processes closed under the
transitive closure of the relation

p needs g = (Import(p) 0 Import{q) N D % ()

A consensus transaction is executed whenever all
processes in the consensus set are ready to execute
consensus transactions. Determination that
consensus has been reached is very similar to the
qufescence detection problem?. The composite
effect on fthe dataspace is computed by first
performing the retractions associated with each of
the participating transactions and then the
corresponding additions to the dataspace.

Syntactically, consensus transactions are
tagged by ‘It Semantically, except for their
participation in the comsensus, they act like
delayed fransactions in the sense that they block
until consensus is reached. We will illustrate the
use of consensus transactions and the process
definitions they encourage in Section 3.

2.3. Transaction Sequencing

A process may sequence the execution of
transactions by means of four flow-of-control
constructs: sequence, selection, repetition, and
replication. To form a sequence, two or more
transactions are listed, separated by semicolons.

The execution of one transaction must complete
before the next one is initiated. In the sequence
shown below, an index and 2 value are paired at
random and placed in the dataspace,

3 p : [index,p]f > let Kump ;
v [value, V|t > let Y=v;
(X.Y)

Sequences may be terminated prematurely by
issuing the ez action.

The selection construct functions like a case
statement consisting of several sequences separated
by ‘0'. These sequences are called guarded
sequences. The fransaction heading a guarded
sequence is called a guarding fransaction.
Successful execution of one of the guarding
transactions leads to the execution of its successors
in the sequence followed by the termination of the
construct. If more than one guarding transaction
can be successfully executed, an arbitrary one (but
only one) of them is selected for execution. If no
guarding transactions can be successfully executed,
the selection fails, i.e., the construct is terminated
without execution of any sequence. Note that
failure of the selection does not cause the process
to abort or terminate, rather the selection is
modeled as a ‘skip’ statement in this instance.
Since delayed transactions cannot fail, a selection
imvolving delayed transactions will block until one
of the guarding transactions succeeds. This is the
case in the example below, where either a value is
paired with a positive index or a non-positive index
is retracted.

[3p:[index,o]t : p>0 > let X=p ;
Jr: [value vt > let Y=v ;
(XY)

%—I 3 p : |index,p|} : p<O > skip

The repetition construct works similarly but
is restarted after each selection. Termination of
the repetition normally occurs when a selection
terminates without selecting a guarded sequence.
Termination of the repetition can made explicit by
including the action exzif in the action_list of some
tramsaction in one of the guarded sequences. In
such cases the erit action terminates the guarded
sequence and the repetition.

The {ollowing example uses the repetition to
perform the operation of the previous example on
all index tuples.

+[3 pv: [index,plt, [value]t : p0 > (p,0)
0 3p:lindex,p)}: p<0 > skip
0 ~(lindex,*]) > exit
]

The last construct we discuss is the
replication. Although both selection and repetition
allow for concurrent initiation of multiple

fransactions, they are essentially sequential
constructs since only one guarding transaction is
permitted to commit. By contrast, the replication
provides for unbounded concurrent execution of
transactions, To explain the semantics of the
construet, let us consider the following replication
which sorts index/value pairs by exchanging the
value fields whenever they are not in accordance
with the indices.

[Hla2ene2 il B2,02)f, i< :
v1>v2 — (01,02),(12,01)
]

The syntax is similar to that for repetition with %’
being replaced by the symbol '=’ to be suggestive
of parallelism.

Conceptually, we can think of this construct
as consisting of an unbounded number of textual
copies of each of the transaction sequences that
make it up, all executing concurrently. An
alternate, operational model is for each sequence to
be started concurrently, with every successful
execution of a guarding transaction leading to the
creation of a finite, but indeterminate number of
copies of the transaction sequence. The construct
terminates when all generated sequences terminate.

2.4. Process

SDL supports the definition of parameterized
process types, henceforth called process definftions.
Process definitions assume the format

PROCESS type_name(parameters)
IMPORT
impori_definitions
EXPORT
ezpori_definitions
BEHAVIOR
sequence_of_statements

where a statement is a transaction or a flow-of-
control construct. For a given program the set of
process definitions is static but processes may be
created dynamically as in the transaction

Ja : [year,a] — Statistics(a)

where an instance of the process Statistics is
started for some year found in the dataspace.
Process termination occurs when the last
statement is executed or upon execution of the
abort action in a successful transaction.

Although each process definition is required
to have an explicit view specification, in the
context of this paper, we will omit it whenever the
view covers the entire dataspace, i.e., when it is
not restricted in a meaningful way.

3. PROGRAMMING STYLE

To show the difference in style between
traditional approaches and the shared dataspace
paradigm we present here solutions to three well
understood problems: summing the values of an
array, accessing and sorting a property list, and
region labeling. Our objective is two-fold. Pirst,
by taking traditional solutions and recoding them
using SDL we hope to show SDL’s flexibility and
assist the reader in making the transition to the
shared dataspace paradigm. Second, by providing
typical shared dataspace solutions for the same
problems we want to demonstrate the expressive
power of the language and the changes in
programming style. (Note: To simplify the
examples, we sometimes omit the lists of quantified
variables since the variables are already
distinguished by Greek letters.)

3.1. Array Summation

In the first example we consider an array A
of integer values with the index ranging from 1 to
N=2" Parallel summation can be carried out in n
phases. In the first phase we add to each even
position the value of the preceding odd position
and drop from consideration all the odd positions.
In the next phase we treat the even positions as if
they were an array of length 2! and repeat the
procedure until we obtain an array of length one
containing the summation result.

The algorithm maps equally well on shared-
variable or message-based models. Let us consider
first a synchronous shared variable solution, as one
might use on the Connection Machine®, and its
simulation in SDL. A reasomable initial
configuration would be one in which the dataspace
D contains one tuple for each array entry A(k), e,

D = { <k,Alk)> | 1<k=<N}
and the initial process society is

{ Sumi(k,1) | 1I<k<N and k is even }
where the Sumi(k,j) are given by

PROCESS Sumi(k,j)
a8 : k=27 alt, kO]t 11 (k,a+8)
[kmod 2" =011 Sumi(k,j+1)
0 kmod 2/+ %0 1t skip

]

The first transaction in Sumi replaces two
array entries by one containing the sum. The
selection comstruct creates a new Suml process for
each of the new array enftries. The consensus
transaction is used to force synchronous execution
of all the processes present in each phase j. {Since
we assume that all processes import the entire
dataspace the consensus set is represented by the
entire process society).

An asynchronous solution can be constructed
by creating a process for each array entry still
under consideration in each phase and by tagging
each piece of data with the phase in which it must
be considered. Initially, the dataspace consists of
one fuple per entry in the array

D ={ <kAlk),I> | 1<k<N }
and the process society is

{ Sum2(k,7) | 1<j, k<N and k mod 27=0 }
where the Sum2(k,j) are given by

PROCESS Sum(k,j)
Fa.f: [k=2""a i, KAt > (ka+8i+1)

The use of the delayed transaction enables each
process to wait until all of its data is ready. In the
shared wvarizble model the tuples <k *7> would
reuse the same location of an array A(kj} while in
a message-based model the tuple <k %jj> would
become a message (*) between a process in the
phase (j—1)and a process in the phase .

Although these two solutions are easily
expressed in SDL, they are not as elegant or
compact as the program

PROCESS Sum3
=[3:[valt, (mA : vep — (g,046)]

which assumes a dataspace like that of the first
summing example. This algorithm preserves the
essential idea of generating parallel partial sums
without introducing the synchromization required
by 2 strict phase-by-phase processing.
Furthermore, it leaves undefined the degree of
parallelism that is actually present at execution
time—it depends upon the availability of
computing resources on the particular machine.

We find the third solution preferable; it
conveniently expresses the desired computation
while imposing minimal control constraints that
could potentially limit the concurrency in
execution. This approach requires a sophisticated
language implementation to provide efficient
program execution. The first two solutions, where
the programmer supplies more control structure,
require less of the language implementation for
efficient execution. However, our objective is to
ease the fask of the programmer in expressing
parallel programs, not necessarily the task of the
language implementors.

3.2. Property List

The second example involves operations on a
property list consisting of property names and
values. The property list is structured as a linked
list where each node in the list is represented by a
four-tuple of the form

< node_id,property_name,value next_node_id>>

The objective here is to show SDL’s capacity to
deal with distributed data structures.

The first program simulates a recursive
traversal of the list in search of a particular
property. In place of the normal recursive calls, a
new process is created to continue the search. The
initial process society consists of one Search
process with id being the first element of the
property list and P being the property desired.

PROCESS Search(id,P)
[3v:[idPu* > (Py)
0 3r:[idr*nil]: =P > (Pnot_ound)
0 3me:fidm* . m#P, 5nil > Search(s,P)

It is unlikely, however, that the programmer
would go to the trouble of simulating the recursion
when the language permits one to address data by
contents. The preferred solution would take the
form

PROCESS Find(P)
[Fv:[*Pr¥ > (P
0 ~-3v:[*Pw* > (Pnot_found)
]

Here it is assumed that there is only one property
list in the dataspace and that the list is stable (not
modified) during the execution of this process.
Multiple lists can be handled by tagging each list
with an additional unique identifier. Instability,
however, cannot be handled as easily. It leads to
added implementation complexity and penalties to
ensure serializability of transactions. However, it
is important to note that views provide a
mechanism by which the penalities can be
minimized by limiting transactions to small
portions of the dataspace.

Before concluding this section, we provide
cne last example program, sorting the property list
by names. This is done by associating a process
Sori(node_id,next_node_id) with each node in the
property list.

PROCESS Sort{node_id,next_node_id)
IMPORT
(node_id,***); (next_node_id,* **)
EXPORT
{node_id,* * *); (next_node_id,* * *
BEHAVIOR
next_node_id = nil — exit
#f 3 {e1,m1,01,02)8, [12,72,02,:8]F 1 #1>72
= (1,72,12,:2), (+2,m1,11,:3)
0 3:{1,m1,01,2), [12,72,02,.3] : 11<n2
11 exit

Two interesting features of this program are
the formation of process communities by means of

import set overlap and the use of consensus
transactions to specify the termination of a
distributed computation. Bach Sorf process enters
the sorting loop, which is exited only if the
consensus transaction is successful. The consensus
transaction in each Sort process checks for proper
ordering between two consecutive nodes in the list.
At any point in time when its two nodes are
properly ordered, a Sort process is willing to
participate in a consensus. When all Sort processes
see ordered entries in the list, the sort is complete;
the consensus transaction then takes place with
the processes exiting their respective loops.

The consensus transaction, perhaps more
than anything else, illustrates the expressive power
we want to putf in the hands of the programmer. It
is a high-level concept; it occurs frequently in
programming; it relates closely to some important
concuwrrent language construets and concepts; and
it holds the promise for efficient implementation.

3.3. Region Labeling

Our last example is a common problem in
computer vision. After subjecting a digitized
image to a threshold operation T, contiguous
regions of equal intensity are identified and
labeled. Assuming a predicate neighbor(p1,02) to
tell if two pixels are 4-connected, the threshold and
labeling operations can be performed by a single
process issuing many parallel transactions.

PROCESS Threshold_and_label
s 3 [image,p, |t
—+ (threshold,p, T(v)), (label,p,2)
=~[3:neighbor(p1,02), [label,p1,u]f,
[label,p2,A], [threshold, 1,1,
[threshold,p2,7] : p<h
—+ (label,p1,)\)

]

Each instance of the first transaction replaces a
pixel at xy-location p having intensity v by a
threshold value T{v) at the same location.
Instances of the second transaction seek out
neighboring pixels having the same threshold
values but different labels and propagate the label
of the largest xy-coordinate covered by the region.
The resulting program is representative of the
workers model, often used in Linda programming,
where a number of processes are created and sent
out to seek work in the dataspace.

In this program, the labeled regions are not
available for further processing until the entire
program completes execution. Waiting for all
regions to be labeled is often unreasonable, as in
the case of an image which results from continuous
terrain scanning from an airborne platform. One
apparent solution to this problem is to detect the

fully labeled regions with a separate process.
However, the availability of process views
facilitates the formulation of =2 different, less
obvious, solution,

In this region labeling program, the
threshold and labeling operations are performed by
separate processes. The threshold process applies
the threshold operation and then creates a labeling
process for each pixel in the image.

PROCESS Threshold
~[3pv:[imagep,y|t
—+ (threshold,p, T{v}), Label(p,T(v))
]

The actual labeling is performed by the
Label processes. As shown below, the labeling
process first assigns a label r (i.e., its own location)
and waits for all its neighbors belonging to the
same region to make their own label assignments.
Once the import set becomes stable, the sorting
loop shown earlier may be used to assign to all
pixels in a region the label of the largest
coordinate covered by the region. When the
labeling is complete in a given region, the
threshold values are discarded.

PROCESS Label(r,t)
IMPORT
p, : neighbor{p,r}, [threshold,g,t] : [label,p,\]
=> (label,p,A)
¢ : neighbor{p,r) : [threshold,p,t}
=> (threshold,p,t)
g, v 1 neighbor{p,r) : [image,p,v]
=> (image,p,v)
EXPORT
{(1abel,r,*)
BEHAVIOR
{label,r,r) ;
~fimage,**| > skip ;
¥ p : [threshold,p,*] : [label,p,*] > skip
«[3 pe): [labelr,plt, [label,p, N p<h
> (label,r,3)
0 ¥ ek [labelr,y], [label,p,) : =X
11 exit

[threshold,r,*|t

In defining the import set for the Label
process, we took advantage of the fact that SDL
allows the view to depend upon the current
configuration of the dataspace. At the point where
the sorting iteration is entered, for instance, the
import set is stable and consists of the threshold
and labeling information about those 4-connected
neighbors of r that belong to the same region.
This ensures that the consensus transaction
involves only labeling processes operating over the
same region. Consequently, in confrast to the first
solution, the labeling program allows the formation
of communities of processes which work

asynchronously on some distributed data, structure,
e.g., 2 region, and synchronize whenever they
believe that a subtask is complete. We could call
this style of programming the communily model.
Processes interlocked by the overlap between pairs
of import sets form a closed community, Although
a process need not wait for the entire community
to be formed before starting its work, it musé
somehow ensure that all its neighbors exist.

Otherwise, individual decisions based on
incomplete information can undermine the
communal objective and lead to prematurs

termination or deadlock on the part of some
processes.

Given our limited experience with writing
5DL programs, we are not vet in a position to
provide a good critical evaluation of the worker
and community models. A hybrid approach will
probably prove to be the right solution, but this is
a topic of current investigation.

4. CONCLUSIONS

Our ultimate goal is to develop the software
support needed for the design, analysis,
understanding, and testing of programs involving
many thousands of concurrent processes runming
on a highly parallel multiprocessor. No single
technical development will solve all the problems
associated with what we have come to call large-
scale concurrency. It is certain, however, that one
must consider both novel programming paradigims
and innovative exploratory environments. The
search for new programming paradigms must be
concerned above all with offering programming
convenfence and with encouraging programmers to
magimize program CONCUTTERCY. Future
environments must provide, among other things,
powerful visualizaiion capabilities which will assist
programmers in understanding the behavior and
performance characteristics of the programs they
develop—there is no other way for humans to
assimilate voiuminous information about the
continuously changing program state.

Our concern with large-scale concurrency
spans both language and visualization issues.
However, we believe that the language should
come first and the visualization second. For this
reason we started our investigation by seeking a
programming paradigm appropriate for large-scale
concurrency and yet conducive to an elegant
solution of the visualization problem. The shared
dataspace paradigm is attractive for several
reasons. First, it offers a high degree of Aexibility
in programming through its content-addressable
data structures and its decoupling of the control
and data states. Its powerful and compact data
transformations, especially the replication
construct and the consensus transaction, maintain

a simple program structure while providing for
maximal eoncurrency during execution. The global
dataspace, and its decoupling frem the control
state, should also provide a solid foundation for
reasoning about global system states. Finally, the
shared dataspace is the only paradigm we are
aware of which elegantly accommodates
programmer-defined visvalization. Potentially one
can create visualization processes completely
decoupled from the rest of the process society, yet
having complete access to the data state of the
computation.

Acknowledgment: This work was supported
by the Department of Computer Science,
Washington University, St. Louis, Missouri. We
thank our colleagues Wei Chen and Ken Cox for
their helpful reviews of the manuscript.

5. REFERENCES

1. Ahuja, 3., Carriero, N, and Gelernter, D.,
“Linda and Friends,” COMPUTER 19(8) pp.
26-34 (August 1986).

2. Chandy, M. and Misra, J, “An Example of
Stepwise Refinement of Distributed Programs:
Quiescence Detection,” ACM Traensactions on
Programming Langueges end Systems 8(3) pp.
326-343 {July 1986).

3. Chandy, M. and Misra, J., Parallel Program
Design: A Foundation, Addison-Wesley,
Reading, Massachusetts {1988).

4. Forgy, C. L., OPS88: User’s Manuel aond
Report, Production Systems Technologies, Inc.
{March 1985),

5. Gelernter, D., “Generative Communication in
Linda,” ACM Transactions on Programming
Languages and Systems 7(1)pp. 80-112
(January 1985).

6. Hillis, W. D. and Steele, G. L. Jr, “Data
Parallel Algorithms,” Communications of the
ACM 29(12) pp. 1170-1183 (December 1986).

7. Hoare, C. A. R,, “Communicating Sequential
Processes,” Communications of the ACM
21(8) pp. 666-677 (August 1978).

8. Rem, M., “Associons: A Program Notation
with Tuples Instead of Variables,” ACM
Transections on Programming Languages and
Systems 3(3) pp. 251-262 (July 1981).

9. Roman, G-C, “Language and Visualization
Support for Large-Scale Concurrency,” in
Proceedings of the 10th International Conference
on Soffware Engineering, IEEE, Singapore
{(April 1988),

	A Shared Dataspace Language Supporting Larger-Scale Concurrency
	Recommended Citation
	A Shared Dataspace Language Supporting Larger-Scale Concurrency

	tmp.1460750766.pdf.55kUt

