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FGFR2 amplificat ion in colorectal
adenocarcinoma
Jamal H. Carter,1 Catherine E. Cottrell,2,3 Samantha N. McNulty,2

Katinka A. Vigh-Conrad,3 Stephen Lamp,2 Jonathan W. Heusel,2,3

and Eric J. Duncavage2

1Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
20892, USA; 2Department of Pathology and Immunology, Washington University in St. Louis, Missouri 63130,
USA; 3Department of Genetics, Washington University in St. Louis, Missouri 63130, USA

Abstract FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast
cancers; however, this molecular alteration has never been reported in a primary
colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase
inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified
colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under
investigation in clinical trials for breast and gastric cancer. Thus, better characterizing
colorectal tumors for FGFR2 amplification could identify a subset of patients who may
benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification
identified by clinical next-generation sequencing in a primary colorectal cancer. Further
characterization of the tumor by immunohistochemistry showed neuroendocrine
differentiation, similar to the reported properties of the NCI-H716 cell line. These
findings demonstrate that the spectrum of potentially clinically actionable mutations
detected by targeted clinical sequencing panels is not limited to only single-nucleotide
polymorphisms and insertions/deletions but also to copy-number alterations.

[Supplemental material is available for this article.]

INTRODUCTION

Colorectal cancer (CRC) is a leading cause of mortality and morbidity and constitutes the
third most common malignancy diagnosed in both men and women (Siegel et al. 2016).
CRC tumors are generally divided into two broad, but biologically distinct, molecular sub-
types: tumors characterized by microsatellite instability (MSI) and tumors characterized by
chromosomal instability (CI). MSI occurs when mismatch repair (MMR) pathways become in-
activated, either through methylation of the MLH1 promoter (typically in a CpG island meth-
ylator phenotype background) or through mutational inactivation of MLH1 and/or other
MMR pathway genes. MSI tumors constitute ∼15% of sporadic CRC cases. They typically
present in the right hemicolon and are associated with BRAF V600E mutations (Cancer
Genome Atlas2012). CI tumorsconstitute∼85%of sporadic CRC cases. Thisheterogeneous
group is characterized by mutations in APC, KRAS, and TP53, as well as frequent, recurrent
somatic copy-number alterations (SCNAs) (Cancer Genome Atlas 2012; Wang et al. 2015).

Although many recurrent mutations have been identified in CRC, only a few have been
validated as predictive biomarkers. Anti-EGFR antibody therapy (e.g., panitumumab and
cetuximab) has proven effective in metastatic tumors with wild-type MAPK pathway genes
(Amado et al. 2008), but mutations in tumors with KRAS, NRAS, and/or BRAF confer
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decreased sensitivity to these drugs (National Comprehensive Cancer Network 2016).
Likewise, the clinical importance of most of the reported SCNAs is uncertain (Wang et al.
2015), but rarely a clinically actionable discovery is made. In a case report of a patient with
CRC with amplification and overexpression of ERBB2, a dramatic radiographic response
was observed upon treatment with trastuzumab (Sorscher 2011), similar to the response ob-
served in ERBB2-amplified metastatic breast cancer (Vogel et al. 2002).

Here, we present the multiplatform, pathologic characterization of a case of CRC submit-
ted for routine clinical analysis. This sample was subjected to next-generation sequencing
(NGS) following hybrid capture–based enrichment of a 425-kb target space. Although this
assay was intended to detect single-nucleotide variants and small insertions and deletions
(indels) in cancer relevant genes, a read depth (>5000×, reference mean 1135×) suggestive
of a focal amplification was noted at the FGFR2 locus, a SCNA that is considered medically
actionable in other cancer types. Bioinformatic software designed to predict SCNA from tu-
mor samples confirmed the FGFR2 amplification from sequencing data, and findings were
verified by chromosomal microarray and fluorescence in situ hybridization (FISH). This is
the first report of a FGFR2 amplification in a non-cell-line-derived, clinical CRC specimen ob-
tained during the course of routine pathologic examination. Thiscase highlights the utility of
SCNA prediction from clinical NGS data, as copy-number variations can be detected in the
absence of predefined expectations.

RESULTS

Clinical Presentat ion

A 56-yr-old female with a questionable history of ulcerative colitis underwent a total abdom-
inal colectomy for a 6-cm, poorly differentiated, signet-ring adenocarcinoma in the sigmoid
colon (Fig. 1, top inset). The specimen revealed transmural and serosal involvement of the
perirectal and pericolic soft tissue by the tumor, aswell aswidespread lymphovascular space
invasion and metastatic involvement of 14 of 18 pericolonic lymph nodes. Altogether, this
constituted stage IIIC disease. MMR markers MLH1, PMS2, MSH2, and MSH6 showed re-
tained expression by immunohistochemistry (IHC) (Fig. 2).

Adjuvant chemotherapy with a standard first-line regimen (FOLFOX) was initiated but
stopped after eight cycles because of side effects. Further imaging was performed to assess
the disease status. This revealed bulky retroperitoneal and portahepatic lymphadenopathy,
multiple metastatic, cardiophrenic lymph nodes, and multiple hepatic lesions. A fine needle
aspiration of a liver lesion confirmed metastasis, indicating stage IV disease; however, there
was insufficient tissue for further molecular studies. An alternative regimen (FOLFIRI) was
then initiated, and tissue from the patient’s primary colon cancer resection specimen was
submitted to Genomics and Pathology Services at Washington University in Saint Louis
(GPS@WUSTL) for mutational profiling. The GPS panel (described below) is a next-genera-
tion sequencing–based panel that targets 48 common cancer genes and is performed in a
certified clinical environment, permitting return of patient results and third-party billing.

Genomic Analysis, Microarray, and FISH

A single reportable mutation, TP53 p.D281E (Chr17:g.7577095G>T; NM_000546:
c.843C>A), was identified among the 48 genes analyzed on the GPS@WUSTL solid
tumor panel (Table 1). According to the COSMIC (Forbes et al. 2015) and IARC TP53
mutation (Petitjean et al. 2007) databases, the p.D281E variant in TP53 has been described
as a deleterious somatic mutation in various carcinomas, although it has not been specif-
ically previously reported in CRC. Functional data from promoter response element
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transactivation experiments indicate that this variant results in loss of protein function
(Jordan et al. 2010).

Standard quality control metrics indicated significant depth of coverage in the region of
the FGFR2 gene. To further explore the possibility of copy-number variation (CNV), genome-
wide copy-number information wasextracted from the targeted NGSdata using two somatic
copy-number aberration detection tools: CopywriteR (Kuilman et al. 2015) and CNVkit
(Talevich et al. 2014, 2016). Both tools revealed a focal copy number amplification involving
the FGFR2 locus in a background of chromosomal aneuploidy (Fig. 3A,B). Consistent with
NGSread depths, microarray data confirmed the presence of a focal, somatic FGFR2 ampli-
fication (Fig. 3B). The 1.08-Mb amplified region encompassed the entirety of the FGFR2
gene, along with the 3′ genic regions of WDR11 and ATE1 (hg19 Chr 10:122,608,791-
123,684,530). FISH also revealed a striking amplification of FGFR2 in tumor-involved tissue
(Fig. 3C). Among 100 analyzed nuclei in the tumor tissue, the average RP11-62L18 probe sig-
nal corresponding to FGFR2 was 63.91, whereas the average chromosome enumeration
probe (CEP) 10 control signal was 2.64, yielding a ratio of 24.2. Analysis of the patient’s nor-
mal colonic tissue demonstrated an average RP11-62L18 (FGFR2)signal number of 1.92 and

Figure 1. Neuroendocrine marker immunostains. (Top) H&E, 2×. Poorly differentiated, signet-ring adenocar-
cinoma showing abundant mucin in thissection. (Bottom left)Synaptophysin, 20×. Focal expression present in
the malignant cells. (Bottom right) Chromogranin, 20×. Malignant glands showing patchy expression.
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average CEP10 signal number of 1.87, yielding a ratio of 1.02. FGFR2 gene amplification has
only recently been documented in CRC, where it was identified in the NCI-H716 colon can-
cer cell line (Mathur et al. 2014).

Protein Expression Analysis with IHC

The NCI-H716 CRC cell line harboring the FGFR2 amplification hasfeaturesof endocrine dif-
ferentiation, which is unusual for CRC. IHC studies indicated that NCI-H716 shows expres-
sion of chromogranin A, mucin, glucagon-like peptide-1 (GLP-1), and receptors for
gastrin, somatostatin, and serotonin (de Bruïne et al. 1992; Reimer et al. 2001). We followed
up on this observation, assessing the extent of neuroendocrine differentiation in the pa-
tient’s tumor by assessing the expression of synaptophysin and chromogranin A using IHC
assays commonly implemented in the anatomic pathology laboratory. Patchy expression
of chromogranin and focal expression of synaptophysin was noted in the malignant cells
of the tumor specimen, comprising ∼10%and <5%of the total tumor cellularity, respectively
(Fig. 1).

Figure 2. MMR immunostains showing retained expression of all four MMR markers. (Top left) MLH1, 20×.
(Top right) MSH2, 20×. (Bottom left) MSH6, 20×. (Bottom right) PMS2, 20×.

Table 1. Detected somatic variants

Chr Location Class Gene
Allele

change RefSeq ID cDNA pos AA change Mutation dbSNP
SIFT
score

PolyPhen-
2 pred

Mutation
type

Cancer
gene

No. of
reads
ref/alt Genotype

Chr17 7577095 SNV TP53 G>T NM_000546 NM_000546:
c.843C>A

NP_000537:
p.D281E

missense N/A 0.01 0.973 somatic Y 423/
405

Het

AA, amino acid; dbSNP, Database for Short Genetic Variations; SIFT, Sorting Intolerant from Tolerant; PolyPhen-2, Polymorphism Phenotyping v2; SNV, single-
nucleotide variant.
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DISCUSSION

NGS-based profiling of the tumor genome identified a single nonsynonymous mutation
among the many genes noted for recurrent mutations in CRC (e.g., KRAS, NRAS, BRAF,
PIK3CA)and a striking focal amplification of the FGFR2 gene. FGFR2 amplification isthought
to occur in 5% of gastric cancersand 1%–4% of breast cancers (Heiskanen et al. 2001; Turner
et al. 2010; Jung et al. 2012). In gastric cancer, FGFR2 amplification isassociated with poorer
overall survival (Su et al. 2014; Shoji et al. 2015). Preclinical, in vitro, and in vivo studies

Figure 3. Multimodal analysis of FGFR2 in the tumor. (A) Targeted NGS-based virtual karyotype (CNVkit)
showing background aneuploidy and an amplification event involving a focal region of Chromosome 10
(Chr10:122737302–123454446) that includesFGFR2. (B)Cytoscan microarray output from the tumor tissue re-
vealing amplification of the region involving FGFR2. (C) Fluorescence in situ hybridization of tumor-involved
(Tumor) and tumor-uninvolved (Control) colonic tissue from the patient’s colectomy. FGFR2 probe (RP11–
62L18, red) to Chromosome 10 enumeration probe (CEP 10, green) ratio showing a high copy-number ratio
of 24.2 in the tumor (right) versus 1.92 in the control (left).
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suggest that breast and gastric cancer cell lines with FGFR2 amplifications may be sensitive
to FGFR inhibitors (Jain and Turner 2012; Xie et al. 2013); clinical trials are ongoing.

The only report of FGFR2 amplification in CRC was from the NCI-H716 colon cancer cell
line (Mathur et al. 2014). Through a series of functional assays, Mathur et al.’s (2014) study
demonstrated that NCI-H716 cells are dependent on FGFR2 amplification and overexpres-
sion for survival and proliferation, and they appear to be sensitive to FGFRinhibitors (Mathur
et al. 2014; Medico et al. 2015). To ascertain the frequency of this molecular event and the
resultant FGFR2 protein overexpression, Mathur et al. performed FGFR2 IHC on a series of
primary and lymph node–metastatic CRC samplesin a tissue microarray. Although they iden-
tified FGFR2 overexpression of five samples (1.5% of >300 tested from various body sites),
FISH was negative for FGFR2 amplification in all samples tested. Thus, this is the first report
to identify FGFR2 amplification in a CRC tumor sample obtained directly from a patient’spri-
mary tumor and the first non-cell-line-derived, clinical case harboring the aberration.

Although not reported as part of the clinical panel, analysis of the raw sequencing data
by CopywriteR and CNVkit also demonstrated an amplification of the ASXL1 gene
(Supplemental Table 1); the ASXL1 gene and 51 other genes were targeted by the clinical
sequencing panel but were not analyzed or reported asthe part of the solid tumor gene pan-
el. The ASXL1 gene is involved in chromatin modification and is mutated in up to 20% of
myelodsyplastic syndrome cases and a smaller percentage of acute myeloid leukemias
(Cancer Genome AtlasResearch et al. 2013; Haferlach et al. 2014). In hematologic malignan-
cies ASXL1 mutations tend to be small insertions or deletions that result in frameshifts.
However, ASXL1 amplifications appear to be reasonably common in solid tumors and are
present in >20% of uterine carcinosarcomas and ∼10% of colorectal cancers, according to
TCGA data (Cancer Genome Atlas 2012; Zhao et al. 2016). ASXL1 amplifications have no
known prognostic significance in solid tumors and may be part of larger genomic events
that span several genes on Chromosome 20.

The NCI-H716 cell line hasbeen demonstrated to expresschromogranin A, mucin, GLP-1,
and receptors for gastrin, somatostatin, and serotonin (de Bruïne et al. 1992; Reimer et al.
2001). We followed up on thispotential insight byassessing the extent of neuroendocrine dif-
ferentiation of our case by utilizing the standard, routine IHC stainscommonly used in the an-
atomic pathology laboratory for thispurpose: synaptophysin and chromogranin A. We found
the patient’s tumor had focal to patchy staining of both markers, indicating some partial neu-
roendocrine differentiation, similar to the NCI-H716 cell line. However, it has been docu-
mented that up to 40% of CRCs may have detectable neuroendocrine marker expression
by IHC (Bosman and World Health Organization 2010). Furthermore, according to the
World Health Organization classification scheme for digestive tumors, a CRC specimen
must show 30% of an adenocarcinoma and a neuroendocrine component, each, to qualify
for classification as a “ mixed adenoneuroendocrine carcinomas (MANEC)” (International
Classification of Diseases, ICD10: C18–C20) (Bosman and World Health Organization
2010). Our case fell short of these criteria. Nevertheless, this association possibly suggests
an interesting association that may warrant further inquiry. The spectrum of molecular abnor-
malities present in MANECs is a poorly studied area, with only case reports and small case
series in the literature that primarily survey small genomic changes, such assingle-nucleotide
variants and indels of <10 bp (Scardoni et al. 2014; Vanacker et al. 2014). In one study that
examined six cases of MANEC by targeted NGS panel, TP53 mutations were the most fre-
quently identified molecular abnormality (Scardoni et al. 2014). To the best of our knowledge,
no study hascomprehensively surveyed the SCNAspresent in MANECsor CRCswith neuro-
endocrine differentiation, precluding the comparison of our case to the frequency of FGFR2
amplification in neuroendocrine-expressing CRC based on the known, extant literature.

The striking signet-ring morphology of the tumor cells in this case, the lack of an identi-
fiable adenomatous mucosal component, and the neuroendocrine differentiation are also
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very reminiscent of goblet cell carcinoids (GCCs) (International Classification of Diseases,
ICD10: C23–C24). However, GCCs are anatomically located within the vermiform appendix,
almost exclusively (Roy and Chetty 2010). Similar to the scenario with MANECs, no compre-
hensive SCNA study exists in the literature for GCCs, likely as a consequence of their rarity.
Interestingly, the NCI-H716 index case is derived from the cecum, which is anatomically
proximal to the appendix. Although NCI-H716 was formally diagnosed as a colorectal ade-
nocarcinoma, and GCC had been described at least a decade prior to the development of
the NCI-H716 cell line, GCC was not a widely recognized diagnostic entity at the time (Park
et al. 1987; Pahlavan and Kanthan 2005; Gagnon and Brubaker 2016). Similar to the scenario
with MANECs, no comprehensive SCNA study exists in the literature for GCCs. However,
loss of heterozygosity was frequently identified in the 16 cases of GCCs included in a study
that used targeted dinucleotide microsatellite markers for 11q, 16q, and 18q, a pattern as-
sociated with midgut carcinoids (Stancu et al. 2003). Chromosome 11 is present in a single
copy in the NCI-H716 cell line, but Chromosomes 16 and 18 are present at normal levels
(Atcc 2016). None of these cytogenomic abnormalities were identified in our case.

Finally, this case report demonstrates that potentially actionable copy-number alter-
ations can be detected from NGSdata generated from small, targeted, clinical NGSpanels.
Although only a minority of clinical laboratoriescurrently report SCNAsaspart validated clin-
ical testing, evidence of large amplifications, such as this FGFR2 amplification, can be sug-
gested by a review of the coverage-based QC metrics at case sign-out. In the absence of a
formally validated SCNA detection pipeline, clinical laboratories may opt to detect copy
gains by simply imposing an upper boundary for gene level coverage (e.g., 5000×, given
a mean reference coverage depth of 1132×). Going forward it hasbecome increasingly clear
that SCNA detection will become an important part of clinical molecular genetic testing.

In conclusion, the genomic, histologic, and IHC characterization of a clinical case of pri-
mary CRC with FGFR2 amplification unveiled phenotypic and genotypic similarities with the
index cell line case for the CRC cell line NCI-H716. Currently, it remainsunclear how frequent
FGFR2 amplificationsare in patientswith CRC, much less in CRC with neuroendocrine differ-
entiation or GCC morphology. The insight contributed by this report will be helpful in iden-
tifying the CRC patient cohort that can potentially benefit from FGFR tyrosine-kinase
inhibitor therapy and in further establishing and clarifying the possible association between
neuroendocrine differentiation, mucinous signet-ring morphology, and FGFR2 amplifica-
tion. Moreover, these findings demonstrate the utility of routine, clinical NGS panels in un-
covering novel, potentially actionable, somatic mutations in cancer.

METHODS

Next-Generat ion Sequencing and Data Analysis

Genomic DNA was isolated from a formalin-fixed paraffin-embedded (FFPE) tissue block
originating from the primary colon resection specimen using the QIAamp DNeasy Blood
and Tissue Kit (QIAGEN), and sample quality and quantity was assessed by Qubit
(Thermo Fisher Scientific) and Nanodrop (Thermo Fisher Scientific). Seven hundred and fifty
nanogramsof DNA wassheared in the Covaris S220 series sonicator to an average fragment
size of 140–230 bp, as measured by Bioanalyzer (Agilent Technologies). Fragmented DNA
was end-repaired, A-tailed, and indexed using the KAPA Hyper Prep Kit (KAPA
Biosystems). Adapter-ligated DNA was subjected to limited amplification prior to hybridiza-
tion with custom cDNA capture probes (IDT). The total size of the target space was 425 kb,
encompassing all coding exonsof 99 cancer relevant genes, selected introns, and intergenic
regions targeted for quality control. The hybridized product was washed, amplified with the
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KAPA amplification kit, and sequenced on an Illumina HiSeq 2500 to generate 2× 101-bp
paired-end reads.

Analysis and interpretation was performed as previously described (Hagemann et al.
2014).

Reads were aligned to the human reference (UCSC build hg19 / NCBI build 37.2) using
Novoalign (Novocraft Technologies). PCRduplicateswere marked with Picard Tools (version
1.53, http://picard.sourceforge.net), and alignment files were converted to mpileup format
using SAMtools (version 0.1.18-0.1.19; Li et al. 2009). Single-nucleotide variants (SNVs)
with depth ≥50× and Fisher’s exact test of strand bias ≤100 were detected using
VarScan2 (version 2.3.6; Koboldt et al. 2009), and visualized in Integrative Genomics
Viewer (version 2.0.16 or later; Robinson et al. 2011). Reports were generated using the
Clinical Genomicist Workstation v2.1.1 (PierianDx). Single-nucleotide variants with global
mean allele frequencies in the population of >1% were considered “ known SNPs” and ex-
cluded from this report. Nonsynonymous SNVs that were not known polymorphisms were
deemed clinically relevant and reportable. Quality and gene-level read depth metrics are
available in Supplemental Tables S1 and S2.

Copy-Number Analysis

Copy-number profiles were determined by CopywriteR (Kuilman et al. 2015) and CNVkit
(Talevich et al. 2014, 2016) using the same alignment files employed in SNV calling.
CopywriteR was run with window size set to 50 kb and no matched or normal reference.
CNVkit’s standard batch pipeline was run with default parameters. Fifteen FFPE tissue sam-
ples from patients without cancer and previously processed through the same analysis pipe-
line were included as pooled controls to facilitate the required normalization for CNVkit; to
further confirm the absence of CNAs in these 15 control samples, all cases were tested by
CopywriteR (which does not require normal controls) and showed no evidence of CNAs.

Microarray

Copy-number alteration was assessed using the Affymetrix CytoScan HD array (Affymetrix)
containing approximately 2.67 million markers including 1.9 million nonpolymorphic probes
and nearly 750,000 probes capable of single-nucleotide polymorphism (SNP) detection.
DNA wasderived from two sectionsof the patient’scolectomy specimen representing tumor
and normal colonic mucosa. Beginning with 1 μg of input DNA, the specimens were enzy-
matically digested, adaptor-ligated, and amplified prior to hybridization on the array
platform. Data were derived using an Affymetrix GeneChip Scanner 3000 7G and copy-
number status was determined in comparison to an in silico FFPE-specific reference file
(CytoScanHD_Array.na33.r2.FFPE.v3.REF_MODEL). Analysiswasperformed using Chromo-
some Analysis Suite v3.1.0.15 (Affymetrix).

Fluorescence In Situ Hybridizat ion

FISH was performed using the BAC clone, RP11-62L18 (Empire Genomics), mapping to the
FGFR2 gene and with CEP 10 (Empire Genomics) mapping to the centromeric region of
Chromosome 10. FFPE tumor-involved and normal colonic tissue from the patient were sec-
tioned at 5 microns and mounted on positively charged slides. Corresponding hematoxylin
and eosin (H&E)-stained slideswere reviewed by a pathologist to mark for areasof tumor and
normal tissue and then transcribed to the unstained slides for FISH. Slides were deparaf-
finized with Citra Solv and dehydrated in 100% ethanol before specimen pretreatment using
the Pretreatment kit II (Abbott Molecular) including Pretreatment solution (NaSCN) at 80°C,
Protease (Pepsin 2500–3000 U/mg, lyophilized) in Protease buffer (0.2 N HCI) at 37°C. After
an ethanol dehydration series (70%, 85%, and 100%), slides were air-dried, and 12 µL of
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probe mixture wasapplied. Coverslipped, sealed slideswere then placed in a preheated 73°
C slide moat (Boekel Scientific), allowing the patient DNA and the probe to denature for 5
min, followed by an overnight hybridization at 37°C. Posthybridization wash was performed
using 2× SSC at 74 ± 1°C and 2× SSC at room temperature before counterstaining with DAPI
(4′,6-diamindino-2-phenylindole). Using a BX61 fluorescent microscope (Olympus), the nu-
clei containing the RP11-62L18 (FGFR2) probe signals and the CEP 10 control signals were
examined within the areas marked, with 100 nuclei used to generate probe counts. Signal
patterns were documented using the Jai Progressive Scan camera and CytoVision
Imaging System (Leica Biosystems).

Immunohistochemist ry

Neuroendocrine (chromogranin and synaptophysin) and MMR IHC was performed accord-
ing to standard histological technique as previously described (Kushnir et al. 2014).
Briefly, 5-µm thick sections from the FFPE tissue block were labeled using a Benchmark
XT automated slide staining system (Ventana Medical Systems, Inc.) following standard pro-
tocols. Prediluted concentrations of the following monoclonal antibodies were used: anti-
Chromogranin A (Ventana Medical Systems, Inc.; clone LK2H10; monoclonal); anti-
Synaptophysin PMS2 (Cell Marque, Co.; clone MRQ-40; monoclonal); anti-MLH1 (Ventana
Medical Systems, Inc.; clone M1; monoclonal), anti-PMS2 (Cell Marque, Co.; clone
EPR3947; monoclonal), anti-MSH2 (Cell Marque, Co.; clone G219-1129; monoclonal), and
anti-MSH6 (Ventana Medical Systems, Inc.; clone 44; monoclonal). Ventana’s ultraView
Universal DAB Detection Kit was utilized and staining-visualized using hydrogen peroxide
substrate and a 3,3′-diaminodenzidine tetrahydrochloride (DAB) chromogen. Manufacture
recommendations were adhered to for antigen retrieval conditions (Ventana CC1, EDTA-
Tris, pH 8.0 solution). Nuclear staining for MLH1, PMS2, MSH2, and MSH6 was considered
positive. Lymphocytesand uninvolved colonic mucosa were used asan internal positive con-
trol for the MMRmarkers. Normal control colon was used as a positive control for the chro-
mogranin and synaptophysin IHC.

ADDITIONAL INFORMATION

Data Deposit ion and Access

Data were generated as part of routine patient care and consent was not obtained for data
sharing in publicly accessible databases. The FGFR2 amplification has been reported as a
variant of unknown significance in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) under ac-
cession number SCV000297799.1.

Ethics Statement

These data were generated as part of routine patient care, have been reviewed by the
Washington University Office of Human Research Protection, and do not meet the criteria
for human studies research.

Author Cont ribut ions

J.H.C, E.J.D., and C.E.C. contributed to study design. J.H.C, C.E.C, S.L., S.N.M., and E.J.D.
contributed to the analysis and interpretation of genomic results. J.H.C. contributed to
analysis and interpretation of the histologic results. K.A.V. contributed to figure design
and layout. S.L. contributed to analysisand interpretation of FISH results. All authorscontrib-
uted to manuscript writing, editing, and approval.

Competing Interest Statement

C.E.C. and J.W.H. are consultants
for PierianDx. E.J.D. is a
consultant for Cofactor
Genomics.

Referees

Marilyn M. Li
Anonymous

Received October 2, 2016;
accepted in revised form May 30,
2017.

FGFR2 amplification in colorectal adenocarcinoma

C O L D S P R I N G H A R B O R

Molecular Case Studies

Carter et al. 2017 Cold Spring Harb Mol Case Stud 3: a001495 9 of 11

 Cold Spring Harbor Laboratory Press on April 11, 2018 - Published by molecularcasestudies.cshlp.orgDownloaded from 



REFERENCES

Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R,
et al. 2008. Wild-type KRASisrequired for panitumumab efficacy in patientswith metastatic colorectal can-
cer. J Clin Oncol 26: 1626–1634.

ATCC. 2016. NCI-H716 [H716] ATCC ® CCL-251 Homo sapiens cecum Product sheet. from http://www.atcc.
org/products/all/CCL-251.aspx.

Bosman FT, World Health Organization and International Agency for Research on Cancer. 2010. WHO classi-
fication of tumours of the digestive system. International Agency for Research on Cancer, Lyon.

Cancer Genome Atlas Network. 2012. Comprehensive molecular characterization of human colon and rectal
cancer. Nature 487: 330–337.

Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A,
Hoadley K, Triche TJ Jr, Laird PW, et al. 2013. Genomic and epigenomic landscapesof adult de novo acute
myeloid leukemia. N Engl J Med 368: 2059–2074.

de Bruïne AP, Dinjens WN, Pijls MM, vd Linden EP, Rousch MJ, Moerkerk PT, de Goeij AF, Bosman FT. 1992.
NCI-H716 cells as a model for endocrine differentiation in colorectal cancer. Virchows Arch B Cell Pathol
Incl Mol Pathol 62: 311–320.

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S,
et al. 2015. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic
Acids Res 43: D805–D811.

Gagnon J, Brubaker PL. 2016. NCI-H716 cells, pp. 221–228. Springer, Berlin.
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A,

Alpermann T, et al. 2014. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes.
Leukemia 28: 241–247.

Hagemann IS, Devarakonda S, Lockwood CM, Spencer DH, Guebert K, Bredemeyer AJ, Al-Kateb H,
Nguyen TT, Duncavage EJ, Cottrell CE, et al. 2014. Clinical next-generation sequencing in patients with
non–small cell lung cancer. Cancer 121: 631–639.

Heiskanen M, Kononen J, Bärlund M, Torhorst J, Sauter G, Kallioniemi A, Kallioniemi O. 2001. CGH, cDNA
and tissue microarray analyses implicate FGFR2 amplification in a small subset of breast tumors. Anal
Cell Pathol 22: 229–234.

Jain VK, Turner NC. 2012. Challenges and opportunities in the targeting of fibroblast growth factor receptors
in breast cancer. Breast Cancer Res 14: 208.

Jordan JJ, Inga A, Conway K, Edmiston S, Carey LA, Wu L, Resnick MA. 2010. Altered-function p53 missense
mutations identified in breast cancers can have subtle effects on transactivation. Mol Cancer Res 8:
701–716.

Jung EJ, Jung EJ, Min SY, Kim MA, Kim WH. 2012. Fibroblast growth factor receptor 2 gene amplification sta-
tus and its clinicopathologic significance in gastric carcinoma. Hum Pathol 43: 1559–1566.

Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L. 2009.
VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics
25: 2283–2285.

Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M, Nevedomskaya E, Xu G, de Ruiter J,
Lolkema MP, et al. 2015. CopywriteR: DNA copy number detection from off-target sequence data.
Genome Biol 16: 49.

Kushnir VM, Nalbantoglu I, Watson R, Goodwin J, Safar E, Chokshi RV, Azar RR, Davidson NO. 2014. Advanced
colorectal adenomas in patients under 45 years of age are mostly sporadic. Dig Dis Sci 59: 2757–2764.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome
Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078–2079.

Mathur A, Ware C, Davis L, Gazdar A, Pan BS, Lutterbach B. 2014. FGFR2 is amplified in the NCI-H716 colo-
rectal cancer cell line and is required for growth and survival. PLoS One 9: e98515.

Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, Buscarino M, Isella C, Lamba S, Martinoglio B,
et al. 2015. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase tar-
gets. Nat Commun 6: 7002.

National Comprehensive Cancer Network. 2016. Colon Cancer (Version 2.2016). From https://www.nccn.org/
professionals/physician_gls/pdf/colon.pdf.

Pahlavan PS, Kanthan R. 2005. Goblet cell carcinoid of the appendix. World J Surg Oncol 3: 36.
Park JG, Kramer BS, Steinberg SM, Carmichael J, Collins JM, Minna JD, Gazdar AF. 1987. Chemosensitivity

testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer
Res 47: 5875–5879.

FGFR2 amplification in colorectal adenocarcinoma

C O L D S P R I N G H A R B O R

Molecular Case Studies

Carter et al. 2017 Cold Spring Harb Mol Case Stud 3: a001495 10 of 11

 Cold Spring Harbor Laboratory Press on April 11, 2018 - Published by molecularcasestudies.cshlp.orgDownloaded from 



Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. 2007. Impact of mutant p53 func-
tional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in
the IARC TP53 database. Hum Mutat 28: 622–629.

Reimer RA, Darimont C, Gremlich S, Nicolas-Métral V, Rüegg UT, Macé K. 2001. A human cellular model for
studying the regulation of glucagon-like peptide-1 secretion. Endocrinology 142: 4522–4528.

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, GetzG, Mesirov JP. 2011. Integrative ge-
nomics viewer. Nat Biotechnol 29: 24–26.

Roy P, Chetty R. 2010. Goblet cell carcinoid tumors of the appendix: an overview. World J Gastrointest Oncol
2: 251–258.

Scardoni M, Vittoria E, Volante M, Rusev B, Bersani S, Mafficini A, Gottardi M, Giandomenico V, Malleo G,
Butturini G, et al. 2014. Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract: targeted
next-generation sequencing suggests a monoclonal origin of the two components. Neuroendocrinology
100: 310–316.

Shoji H, Yamada Y, Okita N, Takashima A, Honma Y, Iwasa S, Kato K, Hamaguchi T, Shimada Y. 2015.
Amplification of FGFR2 gene in patientswith advanced gastric cancer receiving chemotherapy: prevalence
and prognostic significance. Anticancer Res 35: 5055–5061.

Siegel RL, Miller KD, Jemal A. 2016. Cancer statistics, 2016. CA Cancer J Clin 66: 7–30.
Sorscher SM. 2011. Marked response to single agent trastuzumab in a patient with metastatic HER-2 gene am-

plified rectal cancer. Cancer Invest 29: 456–459.
Stancu M, Wu TT, Wallace C, Houlihan PS, Hamilton SR, Rashid A. 2003. Genetic alterations in goblet cell car-

cinoidsof the vermiform appendix and comparison with gastrointestinal carcinoid tumors. Mod Pathol 16:
1189–1198.

Su X, Zhan P, Gavine PR, Morgan S, Womack C, Ni X, Shen D, Bang YJ, Im SA, Ho Kim W, et al. 2014. FGFR2
amplification has prognostic significance in gastric cancer: results from a large international multicentre
study. Br J Cancer 110: 967–975.

Talevich E, Shain AH, Botton T, Bastian BC. 2014. CNVkit: Copy number detection and visualization for target-
ed sequencing using off-target reads. bioRxiv doi: 10.1101/010876.

Talevich E, Shain AH, Botton T, Bastian BC. 2016. CNVkit: genome-wide copy number detection and visual-
ization from targeted DNA sequencing. PLOS Computational Biology 12: e1004873.

Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, Geyer FC, van Kouwenhove M,
Kreike B, Mackay A, et al. 2010. Integrative molecular profiling of triple negative breast cancers identifies
amplicon drivers and potential therapeutic targets. Oncogene 29: 2013–2023.

Vanacker L, Smeets D, Hoorens A, Teugels E, Algaba R, Dehou MF, De Becker A, Lambrechts D, De Greve J.
2014. Mixed adenoneuroendocrine carcinoma of the colon: molecular pathogenesis and treatment.
Anticancer Res 34: 5517–5521.

Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M,
Novotny WF, Burchmore M, et al. 2002. Efficacy and safety of trastuzumab as a single agent in first-line
treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

Wang H, Liang L, Fang JY, Xu J. 2015. Somatic gene copy number alterations in colorectal cancer: new quest
for cancer drivers and biomarkers. Oncogene 35: 2011–2019.

Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X, Xu Y, Gao Z, Liu K, Zhou M, et al. 2013. FGFR2 gene amplifica-
tion in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 19:
2572–2583.

Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, Black J, Cocco E, Choi J, Zammataro L, et al.
2016. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epitheli-
al–mesenchymal transition. Proc Natl Acad Sci 113: 12238–12243.

FGFR2 amplification in colorectal adenocarcinoma

C O L D S P R I N G H A R B O R

Molecular Case Studies

Carter et al. 2017 Cold Spring Harb Mol Case Stud 3: a001495 11 of 11

 Cold Spring Harbor Laboratory Press on April 11, 2018 - Published by molecularcasestudies.cshlp.orgDownloaded from 



 10.1101/mcs.a001495Access the most recent version at doi:
 a001495 originally published online August 23, 20173:2017, Cold Spring Harb Mol Case Stud 

  
Jamal H. Carter, Catherine E. Cottrell, Samantha N. McNulty, et al. 
  

 amplification in colorectal adenocarcinomaFGFR2

  
Material

Supplementary

  
 C1

http://molecularcasestudies.cshlp.org/content/suppl/2017/08/23/mcs.a001495.D

  
References

  
 http://molecularcasestudies.cshlp.org/content/3/6/a001495.full.html#ref-list-1

This article cites 37 articles, 9 of which can be accessed free at:

  
License

author and source are credited.
License, which permits unrestricted reuse and redistribution provided that the original 
This article is distributed under the terms of the Creative Commons Attribution

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

© 2017 Carter et al.; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on April 11, 2018 - Published by molecularcasestudies.cshlp.orgDownloaded from 


	Washington University School of Medicine
	Digital Commons@Becker
	2017

	FGFR2 amplification in colorectal adenocarcinoma
	Jamal H. Carter
	Catherine E. Cottrell
	Samantha N. McNulty
	Katinka A. Vigh-Conrad
	Stephen Lamp
	See next page for additional authors
	Recommended Citation
	Authors


	PDF.js viewer

