36 research outputs found
Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers
A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV ("Mark IV") Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic data set, the reduction of measurement noise, interference by other atmospheric species and instrumental settings, and a better determination of the zenith sky air mass factor. The technique was tested during an ad hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and the results of the direct sun and zenith sky geometries were compared to those obtained by two reference instruments from the Network for the Detection of Atmospheric Composition Change (NDACC): a Fourier Transform Infrared Radiometer (FTIR) and an advanced visible spectrograph (RASAS-II) based on the differential optical absorption spectrometry (DOAS) technique
A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation
Abstract. The use of automated lidar ceilometer (ALC) systems for the
aerosol vertically resolved characterization has increased in recent
years thanks to their low construction and operation costs and their
capability of providing continuous unattended measurements. At the same time
there is a need to convert the ALC signals into usable geophysical
quantities. In fact, the quantitative assessment of the aerosol properties
from ALC measurements and the relevant assimilation in meteorological
forecast models is amongst the main objectives of the EU COST Action TOPROF
("Towards operational ground-based profiling with ALCs, Doppler lidars and
microwave radiometers for improving weather forecasts"). Concurrently, the E-PROFILE program of the European
Meteorological Services Network (EUMETNET) focuses on the harmonization of
ALC measurements and data provision across Europe. Within these frameworks,
we implemented a model-assisted methodology to retrieve key aerosol
properties (extinction coefficient, surface area, and volume) from elastic
lidar and/or ALC measurements. The method is based on results from a large
set of aerosol scattering simulations (Mie theory) performed at UV, visible,
and near-IR wavelengths using a Monte Carlo approach to select the input
aerosol microphysical properties. An average "continental aerosol type"
(i.e., clean to moderately polluted continental aerosol conditions) is
addressed in this study. Based on the simulation results, we derive mean
functional relationships linking the aerosol backscatter coefficients to the
abovementioned variables. Applied in the data inversion of single-wavelength
lidars and/or ALCs, these relationships allow quantitative determination of
the vertically resolved aerosol backscatter, extinction, volume, and surface
area and, in turn, of the extinction-to-backscatter ratios (i.e., the
lidar ratios, LRs) and extinction-to-volume conversion factor
(cv) at 355, 532, and 1064 nm. These variables provide valuable
information for visibility, radiative transfer, and air quality applications.
This study also includes (1) validation of the model simulations with real
measurements and (2) test applications of the proposed model-based ALC
inversion methodology. In particular, our model simulations were compared to
backscatter and extinction coefficients independently retrieved by Raman
lidar systems operating at different continental sites within the European
Aerosol Research Lidar Network (EARLINET). This comparison shows good
model–measurement agreement, with LR discrepancies below 20 %. The
model-assisted quantitative retrieval of both aerosol extinction and volume
was then tested using raw data from three different ALCs systems
(CHM 15k Nimbus), operating within the Italian Automated LIdar-CEilometer
network (ALICEnet). For this purpose, a 1-year record of the ALC-derived
aerosol optical thickness (AOT) at each site was compared to direct AOT
measurements performed by colocated sun–sky photometers. This comparison
shows an overall AOT agreement within 30 % at all sites. At one site, the
model-assisted ALC estimation of the aerosol volume and mass (i.e.,
PM10) in the lowermost levels was compared to values measured at
the surface level by colocated in situ instrumentation. Within this
exercise, the ALC-derived daily-mean mass concentration was found to
reproduce the corresponding (EU regulated) PM10 values measured by
the local air quality agency well in terms of both temporal variability and
absolute values. Although limited in space and time, the good performances of
the proposed approach suggest it could possibly
represent a valid option to extend the capabilities of ALCs to provide
quantitative information for operational air quality and meteorological
monitoring
Personal UV exposure on a ski-field at an alpine site
International audienceMountain sites experience enhanced ambient UV radiation levels due to the concurrent effects of shorter radiation path-length, low aerosol load and high reflectivity of the snow surfaces. This study was encouraged by the possibility to collect data of personal UV exposure in the mountainous areas of Italy, for the first time. Personal UV exposure (expressed in terms of Exposure Ratio, ER) of two groups of volunteers (ski instructors and skiers) at the Alpine site of La Thuile (Valle d'Aosta region, Italy) was assessed using polysulphone dosimetry which was tested in a mountainous snow-covered environment. In addition measurements of biological markers of individual response to UV exposure such as skin colorimetric parameters were carried out. It was found that snow and altitude of study site affect calibration curves of polysulphone dosimeters in comparison to a situation without snow. The median ER, taking into account the whole sample, is 0.60 in winter, with a range of 0.29 to 1.46, and 1.02 in spring, ranging from 0.46 to 1.72. There are no differences in exposures across skiers and instructors in spring while in winter skiers experience lower values. UV exposures are not sensitive to the use of sunscreen across instructor/skier group by day or by seasons or by photo-type. With regard to colorimetric parameters, the main result was that both skiers and instructors had on average significantly lower values of L* and b* after exposure i.e. becoming darker but the inappropriate sunscreen use did not reveal any changes in skin colorimetric parameters except in one spring day. In conclusions UV intensities on the ski-fields are often significantly higher than those on horizontal surfaces. Given the high levels of exposure observed in the present study, dedicated public heath messages on the correct sunscreen use should be adopted
Precipitable water vapour content from ESR/SKYNET sun-sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe
The estimation of the precipitable water vapour content (W) with high temporal and spatial resolution is of great interest to both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun-sky radiometers, or sun photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However, the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal measurements of W, from independent sources, taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS datasets were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol RObotic NETwork (AERONET) W estimations. In both the validations the agreement was very high, with a percentage RMSD of about 6, 13 and 8% in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8% in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in terms of %bias, bringing the agreement with the GPS (considered the reference one) from a %bias of 5.76 to 0.52
Transport of Po Valley aerosol pollution to the northwestern Alps – Part 1: Phenomenology
Mountainous regions are often considered pristine environments;
however they can be affected by pollutants emitted in more populated and
industrialised areas, transported by regional winds. Based on experimental
evidence, further supported by modelling tools, here we demonstrate and quantify
the impact of air masses transported from the Po Valley, a European
atmospheric pollution hotspot, to the northwestern Alps. This is achieved
through a detailed investigation of the phenomenology of near-range (a few
hundred kilometres), trans-regional transport, exploiting synergies of
multi-sensor observations mainly focussed on particulate matter. The explored
dataset includes vertically resolved data from atmospheric profiling
techniques (automated lidar ceilometers, ALCs), vertically integrated aerosol
properties from ground (sun photometer) and space, and in situ measurements
(PM10 and PM2.5, relevant chemical analyses, and aerosol
size distribution). During the frequent advection episodes from the Po basin,
all the physical quantities observed by the instrumental setup are found to
significantly increase: the scattering ratio from ALC reaches values >30,
aerosol optical depth (AOD) triples, surface PM10 reaches
concentrations >100 µg m−3 even in rural areas, and
contributions to PM10 by secondary inorganic compounds such as
nitrate, ammonium, and sulfate increase up to 28 %, 8 %, and 17 %,
respectively. Results also indicate that the aerosol advected from the Po
Valley is hygroscopic, smaller in size, and less light-absorbing compared to
the aerosol type locally emitted in the northwestern Italian Alps. In this
work, the phenomenon is exemplified through detailed analysis and discussion
of three case studies, selected for their clarity and relevance within the
wider dataset, the latter being fully exploited in a companion paper
quantifying the impact of this phenomenology over the long-term
(Diémoz et al., 2019). For the three case studies investigated, a high-resolution
numerical weather prediction model (COSMO) and a Lagrangian tool (LAGRANTO)
are employed to understand the meteorological mechanisms favouring
transport and to demonstrate the Po Valley origin of the air masses. In
addition, a chemical transport model (FARM) is used to further support the
observations and to partition the contributions of local and non-local
sources. Results show that the simulations are important to the understanding
of the phenomenon under investigation. However, in quantitative terms,
modelled PM10 concentrations are 4–5 times lower than the ones
retrieved from the ALC and maxima are anticipated in time by 6–7 h.
Underestimated concentrations are likely mainly due to deficiencies in the
emission inventory and to water uptake of the advected particles not fully
reproduced by FARM, while timing mismatches are likely an effect of
suboptimal simulation of up-valley and down-valley winds by COSMO. The
advected aerosol is shown to remarkably degrade the air quality of the Alpine
region, with potential negative effects on human health, climate, and
ecosystems, as well as on the touristic development of the investigated area.
The findings of the present study could also help design mitigation
strategies at the trans-regional scale in the Po basin and suggest an
observation-based approach to evaluate the outcome of their implementation.</p
Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements
This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005±0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future
New Speakers and Language Revitalisation: Arpitan and Community (Re)formation
Today, it is uncontroversial to claim that France’s regional (minority) languages (RLs) are in decline. However, revitalisation movements have nonetheless continued to surface, and this chapter considers one by-product of such efforts: the emergence of new speakers in RL contexts. The term ‘new speaker’ refers to individuals who acquire the target language not through traditional transmission contexts (e.g. home, family), but instead as adults through language revitalisation initiatives. The chapter focuses on revitalisation efforts in the context of Francoprovençal, a severely endangered and understudied RL spoken transnationally across French, Italian and Swiss borders. A critical examination of current studies supplemented with recently collected empirical data shows new speakers to be central agents in a movement championing proto-nation-statehood across national borders, reorienting the region’s traditional sociolinguistic field