202 research outputs found
Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus
<p>Abstract</p> <p>Background</p> <p>The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: <it>Nuphar advena </it>(from a basal-most lineage) and <it>Ranunculus macranthus </it>(a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of <it>ycf15 </it>and <it>ycf68 </it>as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.</p> <p>Results</p> <p>The <it>Nuphar </it>[GenBank:<ext-link ext-link-type="gen" ext-link-id="NC_008788">NC_008788</ext-link>] and <it>Ranunculus </it>[GenBank:<ext-link ext-link-type="gen" ext-link-id="NC_008796">NC_008796</ext-link>] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of <it>Nuphar </it>with <it>Nymphaea</it>, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides.</p> <p>Conclusion</p> <p>SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as <it>ycf15 </it>and <it>ycf68 </it>is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.</p
Methods for Obtaining and Analyzing Whole Chloroplast Genome Sequences
During the past decade there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. Currently there are 43 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next five years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important recent developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circular amplification, cloning genomes into Fosmid or BAC vectors, and the development of an organellar annotation program (DOGMA). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms
Live lecture versus video podcast in undergraduate medical education: A randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Information technology is finding an increasing role in the training of medical students. We compared information recall and student experience and preference after live lectures and video podcasts in undergraduate medical education.</p> <p>Methods</p> <p>We performed a crossover randomised controlled trial. 100 students were randomised to live lecture or video podcast for one clinical topic. Live lectures were given by the same instructor as the narrator of the video podcasts. The video podcasts comprised Powerpoint™ slides narrated using the same script as the lecture. They were then switched to the other group for a second clinical topic. Knowledge was assessed using multiple choice questions and qualitative information was collected using a questionnaire.</p> <p>Results</p> <p>No significant difference was found on multiple choice questioning immediately after the session. The subjects enjoyed the convenience of the video podcast and the ability to stop, review and repeat it, but found it less engaging as a teaching method. They expressed a clear preference for the live lecture format.</p> <p>Conclusions</p> <p>We suggest that video podcasts are not ready to replace traditional teaching methods, but may have an important role in reinforcing learning and aiding revision.</p
Do Electronic Health Records Help or Hinder Medical Education?
Many countries worldwide are digitizing patients' medical records. What impact will these electronic health records have upon medical education? This debate examines the threats and opportunities
Internet-based medical education: a realist review of what works, for whom and in what circumstances
http://creativecommons.org/licenses/by/2.0
1968: Abilene Christian College Bible Lectures - Full Text
CROWNING FIFTY YEARS”
Being the Fiftieth Annual ABILENE CHRISTIAN COLLEGE BIBLE LECTURES - 1968
J. D. THOMAS, LECTURESHIP DIRECTOR, EDITOR
Published by
ABILENE CHRISTIAN COLLEGE
ACC Station, Abilene, Texas 7960
CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus
The rice blast fungus Magnaporthe oryzae is the most serious pathogen of cultivated rice and a significant threat to global food security. To accelerate targeted mutation and specific genome editing in this species, we have developed a rapid plasmid-free CRISPR-Cas9-based genome editing method. We show that stable expression of Cas9 is highly toxic to M. oryzae. However efficient gene editing can be achieved by transient introduction of purified Cas9 pre-complexed to RNA guides to form ribonucleoproteins (RNPs). When used in combination with oligonucleotide or PCR-generated donor DNAs, generation of strains with specific base pair edits, in-locus gene replacements, or multiple gene edits, is very rapid and straightforward. We demonstrate a co-editing strategy for the creation of single nucleotide changes at specific loci. Additionally, we report a novel counterselection strategy which allows creation of precisely edited fungal strains that contain no foreign DNA and are completely isogenic to the wild type. Together, these developments represent a scalable improvement in the precision and speed of genetic manipulation in M. oryzae and are likely to be broadly applicable to other fungal species
The Complete Nucleotide Sequence of the Coffee (Coffea Arabica L.) Chloroplast Genome: Organization and Implications for Biotechnology and Phylogenetic Relationships Amongst Angiosperms
The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (\u3e 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)–trnT (GGU) spacer, ycf4–cemA spacer, trnI (GAU) intron and rrn5–trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop
CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.
CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL
Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes
- …