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Abstract

During the past decade there has been a rapid increase in our understanding of plastid

genome organization and evolution due to the availability of many  new completely sequenced

genomes.  Currently there are 43 complete genomes published and ongoing projects are likely to

increase this sampling to nearly 200 genomes during the next five years.  Several groups of

researchers including ours have been developing new techniques for gathering and analyzing

entire plastid genome sequences and details of these developments are summarized in this

chapter.  The most important recent developments that enhance our ability to generate whole

chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes

by whole genome amplification using rolling circular amplification, cloning genomes into

Fosmid or BAC vectors, and the development of an organellar annotation program (DOGMA).

In addition to providing details of these methods, we provide an overview of methods for

analyzing complete plastid genome sequences for repeats and gene content, as well as

approaches for using gene order and sequence data for phylogeny reconstruction.  This explosive

increase in the number of sequenced plastid genomes and improved computational tools will

provide many insights into the evolution of these genomes and much new data for assessing

relationships at deep nodes in plants and other photosynthetic organisms.
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I.  Introduction

1.  Historical Overview of Chloroplast Genomics

The study of chloroplast genomes dates back to the 1950s when plant biologists first

discovered that chloroplasts contain their own DNA (see Sugiura, 2003 for a review).  Early

work used electron microscopy, cloning, comparative restriction site mapping, and gene mapping

to characterize genome structure–gene order and organization (Palmer, 1991; Sugiura, 1992).

Such comparisons yielded numerous phylogenetic studies based on restriction site

polymorphisms and gene order changes (reviewed in Downie and Palmer, 1992; Jansen et al.,

1998; Olmstead and Palmer, 1994).  The publication of complete plastid sequences for Nicotiana

(Shinozaki et al., 1986) and Marchantia (Ohyama et al., 1986) provided the first opportunity for

nucleotide level, whole genome comparisons (Morton, 1994; Wolfe et al., 1987).  Currently the

list of completely sequenced plastid genomes has increased to 43 and now includes a wide

diversity of taxonomic groups.  The number of sequenced chloroplast genomes is growing

rapidly: 17 of these 43 genomes (Table 1) have appeared in the last two years.  In spite of the

availability of so many complete genome sequences, our understanding of chloroplast genome

evolution is still limited because this remains a very small sampling of plastid-containing species

and because previous sequencing efforts were not designed to address phylogenetic or molecular

evolutionary issues.  A number of groups (e.g., algae and various lineages of land plants,

including bryophytes, ferns and fern allies, gymnosperms, and certain angiosperm groups,

especially monocots other than the cereal grasses) remain poorly sampled.  However, several

groups of scientists are now focusing their sequencing efforts at filling these gaps and the

number of completely sequenced chloroplast genomes will continue to increase dramatically in

the next few years (for details of three such projects see http://megasun.bch.umontreal.
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ca/ogmp/projects/sumprog.html, http://www.jgi.doe.gov/programs /comparative/second_levels/

chloroplasts/jansen_project_home /chlorosite.html, and http://ucjeps.berkeley.edu/TreeofLife/).

2.  Brief Overview of Chloroplast Genome Structure and Evolution

Plastid genomes vary in size from 35-217 kilobases (kb) but the vast majority from

photosynthetic organisms are between 115 and 165 kb (Table 1).  The 43 completely sequenced

genomes (Table 1) encode from 63 (Toxiplasma) to 209 (Porphyra) genes with most containing

110–130 genes.  The majority of these genes code for proteins, mostly involved in

photosynthesis or gene expression, with the remainder being transfer RNA or ribosomal RNA

genes.  Although the number of genes may be similar between even distantly related lineages,

the exact gene complement may be quite different. Although gene content is largely consistent

within land plants, Martin et al. (2002) found only 44 protein-coding genes to be common among

15 chloroplast genomes representing all major lineages of photosynthetic organisms.   A few

genes have evidently been gained during plastid genome evolution, but the vast majority of gene

content changes represent gene losses, some of which have been lost independently in different

lineages (Martin et al., 2002; Maul et al., 2002).  In all plastid genomes, most genes are part of

polycistronic transcription units, suggestive of bacterial operons (Fig. 1, Mullet et al., 1992;

Palmer, 1991).  Plastid operons often have multiple promoters that enable a subset of genes to be

transcribed within the operon (e.g. Kuroda and Maliga, 2002; Miyagi et al., 1998).  Both group-I

and group-II types of self-splicing introns are found in cpDNAs; the majority are group-II

(Palmer, 1991).  A unique intron type, known as a “twintron” that contains an intron within an

intron, is found in Euglena (Copertino and Hallick, 1991) and possibly other organisms (Maier et
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al., 1995).  Although intron content is quite variable among algal genomes, it is highly conserved

among land plant cpDNAs.

Most land plant (and some algal) genomes have a quadripartite organization (Fig. 1),

comprised of two copies of a large inverted repeat (IR) and two sections of unique DNA, which

are referred to as the large and small single copy regions (LSC and SSC, respectively).  The gene

content and organization of the chloroplast genome change by several mechanisms.

Transposition has been suggested as a mechanism of genomic change in chloroplasts (e.g., in

Trachelium in the Campanulaceae (Cosner et al., 1997) and in Trifolium in the Fabaceae

(Milligan et al., 1989) but few definitive examples have been documented.  Only one clear case

of transpositional gain has been documented in Chlamydomonas (Fan et al., 1995), where a

transposable element that is no longer active has been characterized.  The frequency of the other

types of rearrangements, including gene and intron gains and losses, expansion and contraction

of the inverted repeat, and inversions, varies from group to group.  Most genomes have very few

gene order changes, at least in comparison to close relatives.  However, several lineages have

cpDNAs that are highly rearranged.  The most notable examples are in the algae (e.g.,

Chlamydomonas (Maul et al., 2002), conifers (e.g., Pinus; (Wakasugi et al., 1994)), and several

angiosperm lineages (e.g., Campanulaceae (Cosner et al., 1997); Fabaceae (Milligan et al.,

1989), Geraniaceae (Palmer et al., 1987), and Lobeliaceae (Knox and Palmer, 1998)).  Two

recent reviews summarize the types of genomic rearrangements in cpDNAs of algae (Simpson

and Stern, 2002) and land plants (Raubeson and Jansen, 2005).  Gene order changes in plastid

genomes have proven useful for resolving phylogenetic relationships within a number of

different plant groups (Raubeson and Jansen, 2005).
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3.  Overview of this Chapter

This chapter will focus on the methods used to gather and analyze plastid genomic

sequences.  This will include methods for (1) isolating chloroplasts and purified cpDNA, (2)

amplifying, cloning, and sequencing cpDNA, (3) assembling drafts and finishing genomes, (4)

annotating chloroplast genomes, and (5) analyzing genome sequence and structure. Most of the

steps are equally applicable to the plastid genomes of nonphotosynthetic plants, except for the

initial isolation steps, which typically involve generation of a large insert genomic library.  In our

treatment of genomic analysis, we will focus on evolutionary issues, and even then we will not

be able to be comprehensive.  In addition to reviewing methods that others have used, this

chapter will provide some more detailed protocols used by our group in an ongoing project for

which we are sequencing 60 plastid genomes from seed plants.

II.  Whole Chloroplast Genome Sequencing

Until quite recently, chloroplast genomes have been sequenced by cloning cpDNA into

plasmid vectors, selecting cpDNA-containing clones, and then sequencing the clones using both

plasmid and chloroplast-specific primers.  This process is very labor-intensive and involves

isolation of highly purified cpDNA, which can be quite difficult for many taxa.  More recently,

faster and more cost effective approaches have been developed.  Currently, there are four basic

approaches to sequencing entire chloroplast genomes: (1) isolation of pure cpDNA, followed by

random shearing, shotgun cloning, and sequencing; (2) amplification using long PCR of large

segments of the genome, followed by cloning, and then sequencing of the products using

chloroplast-specific primers; (3) amplification of the entire genome using rolling circular

amplification (RCA) followed by shearing of the RCA product and shotgun cloning and
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sequencing of the fragments; and (4) construction of BAC (Bacterial Artificial Chromosome) or

Fosmid libraries from total DNA preparations, preferably ones that are enriched for cpDNA,

followed by shearing, cloning, and sequencing.  We first will outline our general genomic

sequencing methods and then go on in additional sections to describe the unique parts of each of

the four above-mentioned approaches, with an emphasis on those used by our group.

Draft sequences of chloroplast genomes from our group are being produced at the DOE

Joint Genome Institute (JGI) in Walnut Creek, CA, USA.  This facility is a very high throughput

operation that relies on robotics for many of the steps in the process.  Details of JGI protocols

can be found at http://www.jgi.doe.gov/Internal/protocols/prots_production.html but a general

description is given here.  Our approach is to shear the DNA, select approximately 3 kb

fragments, and clone these fragments into plasmid vectors.  E. coli are then transformed with the

recombinant plasmids and spread onto large plates from which colonies are robotically picked

and placed into 384-well plates containing the appropriate growth medium.  Picking of colonies

from the library is random, so the percentage of wells in the plates that contain cpDNA clones

will be proportional to the percentage of cpDNA (as opposed to nuclear or mitochondrial

“contaminant”) in the DNA sample used to create the library.  The inserts are sequenced from

the 384-well plates using forward and reverse plasmid primers yielding about 500-800 bp of

sequence from each end of the insert.  Sequencing proceeds until the depth of coverage, from

many overlapping sequence reads, enables the assembly of the reads into one contiguous

genomic sequence.  In this approach most steps are performed robotically minimizing human

effort compared to earlier methods.  The tradeoff is that, unlike directed approaches such as

chromosome walking with custom primers, the genome must be sequenced to a depth of 6 -10X

coverage to ensure accurate characterization of the entire genome.
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1.  Isolation of Chloroplast DNA

If pure cpDNA can be obtained in sufficient quantity, it can serve as the template for the

sequencing approach just described.  Many methods have been developed for isolating purified

cpDNA from plants (Palmer, 1986).  Most of these methods involve three basic steps: separation

of plastids from other organelles, lysis of the chloroplasts, and purification of DNA.  The most

commonly applied methods use sucrose or percoll gradients (Palmer, 1986), DNAse I treatment

(Kolodner and Tewari, 1979), or high salt buffers (Bookjans et al., 1984) to isolate purified

cpDNA (or more realistically, a total DNA preparation enriched for cpDNA).  The use of sucrose

gradients is most generally applicable at least in land plants and a detailed protocol is provided in

Table 2.  Basically, sucrose step gradients are used to obtain chloroplasts that are then lysed and

the DNA is recovered from the lysate.  We include several modifications of the basic method

that have been used by our group to improve the quality and quantity of cpDNA.  Consistent

problems are encountered with two aspects of cpDNA isolations, using this method or any other;

(1) collecting a sufficient quantity of chloroplasts while eliminating nuclear contamination and

(2) lysing the chloroplasts and releasing the membrane-bound cpDNA.  Nuclear DNA tends to

adhere to the outer chloroplast membrane, leading to the first challenge.  Regarding the second

challenge, chloroplasts can be surprisingly difficult to lyse.  If harsh enough detergents are used

to lyse the chloroplasts abruptly then the DNA is degraded.  Since the DNA is bound to the

thylakoid membranes the membranes must be solubilized to release the DNA, but if the

chloroplast is lysed too gently the DNA remains bound to the membrane and is lost.  Our

modifications to the basic procedure help in reducing these problems but do not totally overcome

them.
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Two other approaches to cpDNA isolation are the DNAse I (Kolodner and Tewari, 1979),

which is used as a modification of the sucrose gradient technique, and the high salt (Bookjans et

al., 1984) methods (see http://www.jgi.doe.gov/programs/comparative/second_levels

/chloroplasts/jansen_project_home/cpDNA_protocols.html for protocols).  In the DNAse I

method the chloroplast pellet in step 7 (Table 1) is treated with DNAse I to destroy nuclear

DNA.  This treatment also will destroy any cpDNA that is not protected within intact plastids.

Thus, although the purity of cpDNA is very high, the yield is much lower and much more leaf

material is needed to obtain sufficient cpDNA.   In our experience, this method yields very pure

cpDNA when it works but it has only worked for two species of the many that we have

attempted (Lactuca sativa [Fig. 2] and Ginkgo biloba).  Even in those cases, sufficient quantities

of cpDNA for shearing and shotgun cloning were not always recovered.  The second alternative

method employs a high NaCl (1.25 M) concentration in the isolation and wash buffers and it

does not involve any step-gradient centrifugation.  The high salt concentration is supposed to

significantly reduce nuclear contamination.  According to Bookjans et al. (1984), the

undissociated chromatin or nuclear DNA tends to stick to chloroplast membranes because of

electrostatic interactions.  The high salt concentration diminishes these electrostatic interactions

yielding a DNA prep that is enriched in cpDNA.  We have had only limited success with this

approach; one isolation by this method yielded cpDNA of sufficient purity and quantity to

proceed to genomic sequencing (Ranunculus macranthus, Fig. 2).  However, the use of high salt

wash buffers in combination with the sucrose gradient technique has proved to be quite valuable

for decreasing nuclear DNA contamination in chloroplast preps.

The methods just described can also be used (stopping prior to lysis) to collect

chloroplasts for use in whole genome amplifications (described below).  Other workers are
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experimenting with the use of a Fluorescence Activated Cell Sorter (FACS) to separate

chloroplasts from mitochondria and nuclei (D. Mandoli, personal communication).  This method

may be particularly valuable when there is limited tissue available.  Once purified chloroplasts

have been obtained from the FACS, they can be further processed using one of the methods

below.  Another advantage of the FACS approach is that it may also provide purified fractions of

both mitochondria and nuclei in addition to chloroplasts.

2.  Whole Genome Amplification

If purified chloroplasts can be obtained, they can serve as a template from which to

produce abundant cpDNA via Rolling Circular Amplification (RCA), a powerful new approach

for performing whole genome amplification.  This process involves an isothermal amplification

using bacteriophage Phi29 polymerase, which is capable of performing strand displacement

DNA synthesis for more than 70 kb without disassociating from the template (Dean et al., 2002).

This feature, combined with the stability of this polymerase and its low error rate, make this

enzyme a powerful tool for template preparation.  RCA involves the use of random hexamer

primers that are exonuclease resistant, necessary because the DNA polymerase has a 3'-5'

exonuclease proofreading activity.  Most applications of RCA have been directed toward

performing human genome amplification and a kit for this purpose (Repli-GTM) is available from

Molecular Staging Inc.  Our group has been using this kit routinely for amplifying entire

chloroplast genomes and we have modified the Repli-GTM protocol to improve cpDNA

amplification (see Table 3 for protocol).  We have had considerable success with the RCA

approach for a wide diversity of seed plants.  Figure 3 shows restriction digests of RCA products

for two taxa that had sufficient quality and quantity of cpDNA to proceed with genome
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sequencing.  One possible further modification of this protocol would be to develop genome-

specific primers for chloroplast or mitochondrial genomes, which would enable the amplification

of the chloroplast and mitochondrial genomes from total DNA isolations.  Although the low

temperature of the RCA reaction limits the specificity of annealing for these primers,

experiments are in progress, focusing on buffer modifications that show promise for increasing

the specificity of the amplification.

3.  Long PCR and Sequencing

A third approach for obtaining DNA template from which to generate whole

chloroplast genome sequences involves PCR-amplifying of large fragments of the genome using

conserved chloroplast primers.    This approach has been employed recently to sequence three

basal angiosperm genomes (Goremykin et al., 2003a, b, 2004).  Goremykin et al. developed

conserved primers by aligning sequences from seven seed plant genomes (Arabidopsis,

Nicotiana, Oenothera, Oryza, Pinus, Spinacia, and Zea).  These primers then were used to

amplify long fragments ranging in size from 4 to 20 kb and covering the entire chloroplast

genome.  The long PCR products were then sheared into smaller pieces, shotgun cloned, and

sequenced.  Although this approach worked well for Goremykin's group, it does have several

disadvantages: (1) The primer combinations may not work for seed plant genomes that have

experienced gene order changes or substantial sequence divergence at priming sites; (2) The

method relies on PCR, which can sometimes be problematic for some DNAs or segments of the

genome; (3) It would be difficult to extend this approach to algae or spore-bearing plants as little

or no published chloroplast genome sequence information is available to direct primer design in
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these groups; and (4) Numerous PCR and cloning reactions are required, consuming more time

than some of the other available methods.

4.  Cloning Chloroplast Genomes for Sequencing

Finally, a more labor-intensive but highly useful approach for obtaining sequencing

template involves cloning the genome into either BAC or Fosmid vectors.  This approach is

superior to plasmid cloning as the insert is much larger – 40 to 150 kb.  The larger insert size

reduces the amount of screening involved and allows the clones to be sequenced via the JGI

method described above.  A number of BAC and Fosmid cloning kits are available

commercially; we have been using the Epicentre CopyControlTM Kit (Cat. #CCF0S110).  Our

group has used the Fosmid cloning approach to sequence plastid genomes from parasitic plants

as well as normal photosynthetic plants.  The details of our Fosmid protocol can be found in

McNeal et al., (in prep.) but here we provide a general outline for this procedure.  DNA is

isolated using a modified CTAB method (Doyle and Doyle, 1987) with 1% PEG 8000 in the

extraction buffer.   The DNA must then be end-repaired for cloning into vectors that require

blunt-ended, 5' phosphorylated ends.  Pulse Field Gel Electrophoresis (PFGE) is used to separate

fragments in the 40 - 50 kb range for Fosmid cloning and in the 100 - 150 kb range for BAC

cloning.  DNA of the correct size is excised and recovered from the gel, and its concentration is

measured, preferably by flourimetry, to ensure the proper ratio of template to vector for efficient

ligation.  Clones are plated and then transferred to 384-well plates for easy referencing and

gridding onto nylon filters.  We use robotics to pick, transfer, and grid clones quickly and

efficiently.  Plants with larger nuclear genome sizes have a proportionally higher ratio of nuclear

to plastid clones and, thus, require a greater number of clones to be arrayed for screening to
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ensure enough plastid clones will be found to cover the entire plastid genome.  When the DNA

used for Fosmid or BAC cloning is enriched for cpDNA, fewer clones need to be screened.

Macroarrays are screened using hybridization probes generated by PCR-amplification of genes

scattered throughout the plastid genome.  Once positively hybridizing plastid clones have been

identified, a minimal set of Fosmid clones are selected that cover the entire plastid genome

(usually 2-5).  End sequencing and PCR assays of each clone aid in the selection of minimally

overlapping clones, which together cover the genome completely.  One caveat of this method is

that the macroarray hybridizations may also detect recent mitochondrial or nuclear plastid gene

transfers.  However, single or low-copy nuclear transfers are much less likely to be found than

true plastid genome fragments, which occur in many more copies per cell.  End-sequencing and

PCR assays of each clone should eliminate all but the largest and most recent mitochondrial

transfers from passing as plastid clones.  For BAC libraries, only one or two clones are needed to

get complete coverage of the genome, depending on genome size.  The clones are then sheared,

shotgun cloned, and sequenced as described for other methods.  One 384-well plate is sequenced

for each Fosmid clone (with both plasmid primers to yield 768 reads) or 2-3 plates for each BAC

clone in order to obtain 6-10x coverage of the insert.  Additional sequencing may be required to

close gaps or verify regions with low coverage.

Our group has used the Fosmid cloning method to successfully create libraries for a

number of photosynthetic (Ipomoea, Lindenbergia, and Yucca) and non-photosynthetic parasitic

and mycotrophic plants (Corynaea, Cuscuta, Cytinus, Monotropa, Orobanche, and

Prosopanche).  Researchers preparing BAC libraries typically screen for “contaminant” clones

containing chloroplast genome fragments.  In collaboration with Pietro Piffanelli (CIRAD-

AMIS, Montpellier, France) we have obtained plastid genome sequences from cpDNA-



14

containing BACs identified from his Musa and Elaeis libraries.   While Fosmid or BAC library

construction is certainly more technically demanding and time-consuming than cpDNA isolation

or RCA amplification of plastid genomes, the libraries will have a broader utility and we have

found, generally, less finishing of draft genome sequences is required when the shotgun

sequencing libraries are made from well-chosen Fosmid or BAC templates.

III.  Assembling, Finishing, and Annotating Genomes

1.  Assembling Draft Genome Sequences

When preparing a draft genomic sequence from cpDNA or RCA product, we first

generate one 384-well plate of sequences using both forward and reverse primers (768 reads).

Vector and quality trimming of the resulting sequences is performed using Phred (Ewing and

Green, 1998).  Using BLASTN (Altschul et al., 1997), trimmed reads are then used to query a

nucleotide sequence database of previously sequenced chloroplast genomes.  If the BLASTN

search indicates that 60% or more of the reads are chloroplast sequences, we then proceed to

sequence four more plates for a total of 3,840 reads, although additional plates are sometimes

required.  If less than 60% of the library is cpDNA we do not proceed with additional sequencing

but instead work to obtain purer cpDNA preps from which to construct a new library.  When

sequencing from Fosmid/BAC clones, we prepare a separate library for each clone.  One plate

per Fosmid clone library or two plates per BAC clone library usually provide sufficient

coverage.

Individual reads generated from the plates are assembled into contiguous sequences

(“contigs”) using Phrap (Ewing and Green, 1998) and the resulting contigs are analyzed in

Consed, a powerful software package used for sequence finishing
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(http://www.phrap.org/consed/consed.html, Gordon et al., 1998).  Consed has numerous useful

features (Fig. 4), including an overview of the assembly, numerous editing options, a method for

tearing contigs into pieces and performing mini-reassembly, an option for designing finishing

primers, and options for adding new reads.  The Assembly View option (see Fig. 4 for an

example) provides a wealth of information to evaluate the draft genome sequence, including the

depth of coverage, the possible arrangement of the contigs, and cross matches of sequences

between contigs.  For chloroplast genomes that are not highly rearranged, one generally does not

encounter many problems with the assembly, but highly rearranged genomes often require

considerable work interactively reassembling the sequences due to the high frequency of

repeated sequences.  This will require examination of each of the contigs to identify possible

mis-assemblies and the removal and/or relocation of misplaced reads.  Examination of the

assembly will also reveal regions of the draft where there are few high quality reads and more

sequencing is needed.  Effective integrated use of Phred, Phrap and Consed, takes considerable

time to master.  Phred and Phrap, however, are necessary for sequence assembly and Consed is

extremely valuable for assessment of draft assemblies and identifying regions where directed

sequencing is necessary to finish the genome sequence.  The most finishing will likely be

required when purified cpDNA or RCA product is sheared, shotgun cloned and sequenced

“randomly” whereas the least finishing is required when Fosmid or BAC clones are used as the

template.

2.  Finishing Genomic Sequences

Finishing draft chloroplast genomic sequences involves four basic steps: (a) make a

preliminary identification of genes occurring in each contig using the chloroplast genome
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annotation program DOGMA (Dual Organellar GenoMe Annotator, Wyman et al., in press); (b)

examine depth of coverage within each contig to identify regions of low sequence coverage; (c)

design primers that flank gaps and regions of low coverage and perform PCR and sequencing to

fill in necessary regions; and (d) determine the extent of the inverted repeat (IR) and if necessary

confirm using PCR and sequencing across the inverted IR/single copy (SC) junctions.  These

four finishing steps will be described in more detail in the following sections.  All of these steps

may not be necessary.  For example, drafts generated by sequencing BAC or Fosmid clones

often do not require finishing if the screening and selection of clones was done correctly.

However, when purified cpDNA or RCA product is used some finishing will be necessary.  The

amount of finishing will depend on the purity of the cpDNA or RCA product.  High purity

cpDNA could yield the entire chloroplast genome in one contig with no areas of low coverage,

although in our experience this rarely happens unless the purity of the cpDNA or RCA product is

exceptionally high or more than five plates of sequences are done.  Even in these cases, it is still

necessary to confirm the boundaries of the IR because both copies of the IR will assemble

together in Consed.

(a) Identify genes in contigs with DOGMA – DOGMA is a web-based program

developed by our group that makes this step in the finishing process very easy (see section III.3

below for more details about the program, Wyman et al., in press).  DOGMA identifies which

genes are likely to occur in each contig.  Knowledge of the gene content assists in determining

the arrangement of the contigs so that primer pairs that span gaps can be developed.  For

genomes where previous gene mapping data is available one simply compares the gene content

of the contigs to the gene map to arrange the contigs.  When no gene map is available,

comparison of gene orders in the contigs to already sequenced chloroplast genomes often can
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provide valuable information for deciding how the contigs likely are arranged.  It is often

possible to use the already sequenced genomes to estimate the location and sizes of gaps and to

develop more universal primers to amplify through the gaps.

(b) Examine depth of coverage in contigs – Generally our methods generate contigs

that have 6X-10X coverage, but this certainly will depend on which genome sequencing method

we have employed and the quality of the sequencing template.  Our group has decided that, for

each nucleotide, a minimum of two reads each with a Phred/Phrap quality score (q value)

exceeding 20 is necessary for satisfactory genome coverage.  In general, coverage is much higher

except in those regions where we fill in gaps.  However, if areas with sparse coverage occur

within contigs, primers are designed and additional sequence data are gathered.

(c) Design primers to fill in gaps by PCR and sequencing – Once all gaps and areas of

low coverage have been identified primers are designed that flank these regions.  We generally

design 18-20 bp primers in coding regions that are adjacent to the gaps or regions of low

coverage.  We attempt to make the primers as universal as possible by comparing the primer

sequences with previously sequenced chloroplast genomes so that the primers could be used in

the finishing of other chloroplast genomes.  In some cases, we need to design primers that are not

in coding regions.  This is more difficult because primers in non-genic regions may have

multiple priming sites.  We usually can avoid this problem by searching the genome for the

primer sequence using the Consed Autofinish feature (Gordon et al., 2001).  For larger gaps

additional primers must be made to sequence through the gap.  In many cases, the size of the gap

is unknown so it may be a matter of trial and error to determine what extension time to use in the

PCR reaction.
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(d) Confirm extent of inverted repeats – Chloroplast genomes that are sequenced using

long PCR or BAC/Fosmid clones may include each copy of the IR in separate contigs in which

case defining the extent of the IR is straightforward.  However, in many cases all the individual

IR sequencing reads generated by shotgun cloning of purified cpDNA or RCA product will be

assembled together making it difficult to determine the precise IR/SC boundaries.  Several tricks

can be used to get a general idea of these boundaries, especially if parts of the IR are present in

different contigs.  In general, the assembly view in Consed shows a higher depth of reads in the

IR (Fig. 4).  Also, another very useful feature of Consed shows subclone pairing.  This provides

information about the positions of forward and reverse reads from the same clone.  If ends of the

same clone match in distant regions or in different contigs this may be due to a sequence being

part of one of the IR/SC junctions.  In most cases, these methods for identifying possible IR

boundaries are not definitive, and it is necessary to design primer pairs (two for each of the four

IR/SC boundaries) that span the IR/SC junctions.  Amplification and sequencing of these regions

is needed to confirm the boundaries.  Once this has been confirmed, the IR sequence must be

copied, inverted and inserted into the appropriate location to complete the chloroplast genome

sequence.

3. Annotation using DOGMA

Annotation of chloroplast genomes traditionally has been a very tedious and error-prone

task.  The annotations currently in Genbank are not consistent in terms of gene names, and they

are not usually updated when the identities and functions of hypothetical chloroplast reading

frames (ycfs) or open reading frames (orfs) are clarified.  In the past, most chloroplast genome

sequences were annotated by performing BLASTN and BLASTX searches on Genbank.  Many
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of these problems were alleviated upon completion of DOGMA, a web-based program designed

by our group to assist in the annotation of chloroplast and animal mitochondrial genomes (see

http://phylocluster. biosci.utexas.edu/dogma/, Wyman et al., in press).  This program takes a

FASTA-formatted input file of the complete (or partial) genomic sequences and identifies

putative protein-coding genes by performing BLASTX searches against a custom database of 15

published chloroplast genomes of green plants (Fig. 5A).  Errors in the Genbank entries have

been corrected in the database and names of genes and their products have been standardized

following Martin et al. (2002).  Sequence identity is highly conserved for both tRNAs and

rRNAs in chloroplast genomes, so these genes are identified by BLASTN searches against a

database of the same 15 chloroplast genomes.  DOGMA also uses a custom program to infer the

stem loop structure of tRNAs and draw candidate secondary structure diagrams.

DOGMA has many other features to aid in annotation of chloroplast genomes (Fig. 5B).

One DOGMA panel displays all of the putative genes color-coded by gene type.  Selection of a

gene in this lower panel generates an upper panel that shows the five or more most similar

sequences from the database compared to the sequence under analysis along with potential start

and stop codons (Fig. 5B).  The user then must select the most likely start and stop codons to

identify each putative gene.  For genes with introns, DOGMA will identify putative exon

boundaries by BLAST; the user must verify these boundaries and use DOGMA to connect the

exons.  Another window appears that records the annotation information that can be used to

generate a Sequin file for submitting the annotation to Genbank.  Selection of the gene name in

the top panel also generates a window with the actual BLAST results.  In the lower panel of the

annotation window there are additional buttons (Fig. 5B).  The 'extract sequences' button enables

the user to extract certain sets of sequences from the annotation, including protein coding genes
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(either nucleotide or amino acid sequences), intergenic regions, introns, tRNAs, or rRNAs (Fig.

5B).  This feature is particularly useful for extracting sequences to add to a data matrix for

phylogenetic analyses.  The text summary button generates a tabular form of the annotation with

coordinates for the genes and other information about each gene.  More details about the features

of this program can be found by downloading the cp tutorial at

http://phylocluster.biosci.utexas.edu /dogma/.

In the future DOGMA will be modified in several ways: (1) the chloroplast database will

be expanded to include more sequences especially from underrepresented groups such as algae;

(2) mitochondrial genomes from plants, fungi and protists will be added; (3) an option will be

included to allow individual users to develop their own custom database; (4) an ORF finder will

be added to search for putative new genes; and (5) methods will be developed to deal with RNA

editing of start and stop codons, a phenomenon that is common to plant mitochondrial genomes

and chloroplast genomes of some plants (Bock, 2000).

IV.  Analysis of Genome Sequences

The analysis of whole genome sequences is an immense scientific field for which

numerous databases and computational tools exist, some relevant to the study of chloroplast

genomes (Table 4).  Some of these are simply a listing of available genome sequences with

accession numbers to access the sequences on Genbank, whereas others provide additional

information about chloroplast gene names, details of the characteristics of the genomes,

databases of corrected annotations, gene orders, universal primer sequences, and searchable

databases.  All of these are valuable resources for anyone who is working on comparative

chloroplast genomics.  In the sections below we will discuss chloroplast genome analysis in
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terms of phylogenetic comparisons of gene content and gene order, detection of repeats, and use

of coding sequences for phylogenetic studies.

1.  Whole genome comparisons and repeat analysis

A number of computational tools exist for whole genome comparisons, though most of

these were not designed specifically for chloroplast genomes.  We have used several of these

tools to compare gene content, examine genome-wide sequence similarity, look for repeated

sequences, and identify putative regulatory motifs with the primary goal of improving our

understanding of genome evolution.  Our primary goal in using these programs has been to

improve our understanding of both the patterns and mechanisms of chloroplast genome

evolution.  Below we briefly review a few of these tools and how we have applied them to

comparisons of chloroplast genomes.  Table 4 includes information about accessing these

programs.

MultiPipmaker (Table 4, Schwartz et al., 2003) allows the user to compare multiple

chloroplast genomes.  The program generates alignments of whole genomes in comparison to a

reference genome.  The output from MultiPipmaker includes a stacked set of percent identity

plots (Fig. 6) referred to as a "MultiPip," that illustrate sequence similarity among the genomes

in coding and non-coding regions.  This output is helpful in identifying potential genes and

regulatory elements.  Visual inspection of the Multipip also is useful for identifying putative

gene losses or gene duplications, for identifying unannotated genes or conserved nongenic

regions, and for assessing overall sequence similarity among genomes (see Maul et al., 2002 for

a chloroplast genome comparison).  PipMaker (Elnitski et al., 2002), the pairwise version of this
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tool, also has been used to identify repeated sequences by aligning a genome against itself (see

Pombert et al., 2004 for an example of this application using a plant mitochondrial genome).

With the exception of the large inverted repeat that is present in most taxa, chloroplast

genomes generally are considered to have very few repeated sequences (Palmer, 1991).

However, repeated sequences have been identified in a number of genomes, including

Chlamydomonas (Maul et al., 2002), Pseudotsuga (Hipkins et al., 1995), Trachelium (Cosner et

al., 1997), Trifolium (Milligan et al., 1989), wheat (Bowman and Dyer, 1986; Howe, 1985), and

Oenothera (Hupfer, 2000; Sears et al., 1996; Vomstein and Hachtel, 1988).  The most striking

example to date is the Chlamydomonas chloroplast genome of which more than 20% is

composed of short dispersed repeats.  In most of these cases, repeats appeared to be associated

with rearranged blocks of genes.  Thus, characterization of repeat structure in chloroplast

genomes could provide insights into mechanisms of gene order changes.

Several programs have been developed that are designed to identify repeats and group

them into classes.  The two programs that we have found most useful are REPuter and

RepeatFinder (Table 4).   REPuter (Kurtz et al., 2001; Kurtz and Schleiermacher, 1999) includes

a search algorithm that finds various types of repeats, including direct and inverted repeats (Fig.

7).  The user specifies the desired repeat type, minimum repeat length, and the percent identity

(Hamming Distance) and the program locates all repeats that meet these criteria.  The program

also provides a graphic visualization of the location of the repeats in the genome (Fig. 7A).

REPuter can be accessed and run directly using a web browser (http://www.genomes.de/),

though this platform does not allow the user to modify the default options.  We recommend that

users download the standalone version, which is available for UNIX platforms at no cost.

RepeatFinder (Volfvovsky et al., 2001) is a software tool for clustering repeats into classes.  It
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takes as input repeats that have been identified by another program such as REPuter.  This

program must be downloaded and setup on a UNIX platform.  Both REPuter and RepeatFinder

have been used together to examine repeat structure in plant mitochondrial genomes

(Bartoszewski et al., 2004; Pombert et al., 2004).

2. Gene content and order for phylogeny reconstruction

Chloroplast genomes in many groups are highly conserved in gene content, though there

are significant differences in these features in comparisons between algal and land plant genomes

(Raubeson and Jansen, 2005; Simpson and Stern, 2002).  Martin et al. (2002) estimated that only

44 of the 274 plastid-encoded genes are retained in all plastid genomes, and approximately half

(117) of the ones that are missing have been lost or transferred to the nucleus.  Among green

plants there is considerable conservation of both gene content and gene order.  For example, the

gene organization of the earliest diverged green alga sequenced so far, Mesostigma, is very

similar in structure to land plant cpDNAs with 81% of its genes being found in the same clusters

as in land plants (Lemieux et al., 2000).   More recent comparisons with the green alga

Chlamydomonas also revealed a high incidence of gene loss among algal chloroplast genomes

but a much higher level of similarity among green plants (Maul et al., 2002; Simpson and Stern,

2002).  The large number of gene losses among plastid genomes, often occurring in parallel in

different lineages (Martin et al., 2002; Maul et al., 2002), suggests that the use of gene content

for phylogeny reconstruction may be of limited value and, in most cases, the utility of these types

of characters may be restricted to selected groups.

Gene order of the chloroplast genome is generally highly conserved, especially among

land plants.  Previous studies have demonstrated the phylogenetic utility of gene rearrangements
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for resolving relationships at deep nodes, though in most cases only one or a few characters were

available.  Some notable examples include a 30 kb inversion that identified the lycopsids as the

basal lineage of vascular plants (Raubeson and Jansen, 1992), three inversions that supported

monophyly of the Poaceae and indicated its relationship to Joinvilleaceae and Restionaceae

(Doyle et al., 1992), and a 22 kb inversion that identified the basal clade in the Asteraceae

(Jansen and Palmer, 1987).  These types of changes make powerful phylogenetic markers, and

subsequent phylogenetic studies using DNA sequence data corroborated these relationships first

identified by gene order changes.  The best example of the utility of gene order data for

phylogeny reconstruction is in the angiosperm family Campanulaceae (Cosner et al., 1994;

Cosner et al., 2000; Cosner et al., in press).  Gene mapping studies of 18 genera in this family

identified numerous changes in gene order, which were caused by inversion, expansion and

contraction of the IR, and possibly transposition.  The situation in the Campanulaceae is so

complicated that it is not possible to define clearly the evolutionary events responsible for these

rearrangements.  However, phylogenetic analyses of the gene order data have generated a well-

resolved phylogeny for 18 taxa (Fig. 8), and the dataset exhibits lower levels of homoplasy than

phylogenies inferred from rbcL or ITS sequences for the same taxa (Cosner et al., in press).

A number of groups have been developing computational methods for using gene order

data for phylogeny reconstruction (Table 4, Bourque and Pevzner, 2002; Cosner et al., 2000;

Cosner et al., in press; Larget et al., 2002; Moret et al., 2001; Wang et al., 2002).  The

approaches are designed to analyze highly rearranged genomes using several different

phylogenetic approaches, including distance, parsimony and Bayesian methods.  Most of these

algorithms are designed for genomes that have a single chromosome with equal gene content,

though some more recent studies have begun to implement methods for multiple chromosomes
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(Bourque and Pevzner, 2002) and unequal gene content (Tang and Moret, 2003).  The utility of

most of these algorithms has been tested using simulation studies, however, the Campanulaceae

chloroplast genomes have been used as benchmark empirical data-set for assessing speed and

accuracy of these methods (Bourque and Pevzner, 2002; Moret et al., 2001).  A more detailed

review of algorithms for phylogenetic analysis of gene order data can be found in the chapter in

this volume by B. Moret and T. Warnow.  The availability of many new completely sequenced

chloroplast genomes in the future should provide a much expanded empirical data-set for the

development of new algorithms that use gene order data for phylogeny reconstruction.

3.  Phylogenetic and molecular evolutionary analysis of genomic sequences

Completely sequenced chloroplast genomes provide a rich source of nucleotide and

amino acid sequence data that can be used to address phylogenetic and molecular evolutionary

questions.  Several recent studies have attempted to use entire suites of sequences (e.g., all

shared protein-coding genes) from completely sequenced genomes to resolve a number of

phylogenetic issues, including relationships among grasses (Matsuoka et al., 2002), identification

of the basal lineage of flowering plants (Goremykin et al., 2003a, b, 2004; Leebens-Mack et al.,

in prep) and land plants (Kugita, 2003), and relationships among land plants and green algae

(Lemieux et al., 2000; Turmel et al., 1999).  Phylogenies based on all or at least many of the

shared genes among completely sequenced chloroplast genomes also have been used to address

questions about the origins of plastids and about patterns of gene loss or transfer (Chu et al.,

2004; Martin et al., 2002; Maul et al., 2002).  The latter studies have supported several

phylogenetic conclusions: (1) there has been a single primary endosymbiotic origin of plastids;
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(2) extensive gene loss and/or transfer to the nucleus has occurred; and (3) multiple, independent

secondary endosymbiotic events have occurred.

Use of many or all of the genes from the chloroplast genome provides many more

characters for phylogeny reconstruction in comparison with previous studies that have relied on

only a few genes to address the same questions.  However, one current problem with the whole

genome approach is that taxon sampling is quite limited and can result in misleading estimates of

relationship.  A recent example of this problem is the study by Goremykin et al. (Goremykin et

al., ; 2003b; Goremykin et al.) that suggests that Amborella may not be the basal angiosperm, a

result that contradicts many recent phylogenies based on sequences of a few genes (Barkman et

al., 2000; Graham and Olmstead, 2000; Mathews and Donoghue, 1999; Parkinson et al., 1999;

Qiu et al., 1999; Soltis et al., 1999).  Phylogenetic analyses of expanded taxon sets have

demonstrated that inadequate taxon sampling caused Goremykin’s anomalous result (Leebens-

Mack et al., in prep; Soltis and Soltis, 2004).  In the future, increased availability of more

completely sequenced chloroplast genomes will facilitate phylogenetic inference.  Much denser

taxon sampling is necessary before many of the advantages of whole genome sequencing can be

fully realized and investigators must seriously consider the effects of long branch attractions

(Felsenstein, 1978).  Three other problematic issues have been identified and must be considered

especially in broad phylogenetic comparisons.  Compositional bias among plastids from

divergent lineages can generate incorrect tree topologies (Lockhart et al., 1999); alignment of

coding regions can be very difficult, especially when addressing phylogenetic issues at deep

nodes (Chu et al., 2004); and tree topologies are very sensitive to the model of evolution being

used (Leebens-Mack et al., in prep; Martin et al., 1998).  A number of studies have attempted to

address these issues by developing more realistic models of amino acid substitutions for
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chloroplast-encoded genes (Adachi et al., 2000; Morton and So, 2000), by examining lineage

and locus specific rate heterogeneity among chloroplast genomes (Muse and Gaut, 1997), and by

developing alternative methods for using sequences from whole chloroplast genomes (Chu et al.,

2004; Lockhart et al., 1999; Rivas et al., 2002).

V.  Summary and Future Directions

It is currently a very exciting time for the field of comparative chloroplast genomics.

The first chloroplast genome sequences were published 18 years ago and now there are 43

genomes available, almost two-thirds of which have been completed during the past four years

(Table 1).  In this chapter, we have described many recent developments, which, by improving

methods for gathering and analyzing chloroplast genome sequences, are providing the necessary

framework for greatly expanding the number of sequenced genomes in the near future.  The most

significant advancements include RCA for amplification of entire genomes and DOGMA

software (Wyman et al., in press) for annotation.  Several ongoing projects on seed plants, land

plants, and algae are likely to result in the availability of nearly 200 completely sequenced

genomes during the next five years (see http://megasun.bch.umontreal.

ca/ogmp/projects/sumprog.html, http://www.jgi.doe.gov/programs /comparative/second_levels/

chloroplasts/jansen_project_home /chlorosite.html, and http://ucjeps.berkeley.edu/TreeofLife/

for more detailed information about ongoing projects).  This increased taxon sampling to include

more representatives of all of the major lineages of plants, ultimately will provide unprecedented

opportunities for addressing phylogenetic questions at deep nodes.  These data also will provide

important new insights into both patterns and mechanisms of chloroplast genome evolution.

Another outcome of these efforts will be the development of new algorithms, new models of
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chloroplast sequence and genome evolution, and improved computational tools for using both

gene order and sequence data for phylogeny reconstruction.  Finally, the chloroplast genomic

data and the computational methods will be of great value to plant molecular biologists interested

in the functional attributes of chloroplast genes and their interaction with other plant organelles.
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Table 1.  Alphabetical list of 43 complete plastid genome sequences as of August 16, 2004
(see http://megasun.bch.umontreal.ca/ogmp/projects/other/cp_list.html, http://www.ncbi.nlm.
nih.gov:80/genomes/static/euk_o.html, and http://www.rs.noda.tus.ac.jp/~kunisawa/order/
front.html for access to these genomic sequences).  All listed genomes are chloroplasts except as
noted.

Species NCBI
Classification

Accession
Number

Year
Completed

Genome
Size (bp)

Adiantum capillus-
veneris

Embryophyta AY178864 2003 150,568

Amborella trichopoda Embryophyta AJ506156 2003 162,686
Anthoceros formosae Embryophyta AB086179 2003 161,162
Arabidopsis thaliana Embryophyta AP000423 1999 154,478
Atropa belladonna Embryophyta AJ316582 2003 156,687
Calycanthus fertilis
var. ferax

Embryophyta AJ428413 2003 153,337

Chaetosphaeridium
globosum

Streptophyta AF494278 2002 131,183

Chlamydomonas
reinhardtii

Chlorophyta BK000554 2004 203,828

Chlorella vulgaris Chlorophyta AB001684 1997 150,613
Cyanidioschyzon
merolae

Rhodophyta AB002583/
AY286123

2003 149,987
149,705

Cyanidium caldarium Rhodophyta AF022186 1999 164,921
Cyanophora
paradoxa

Glaucocystophyceae U30821 1995 135,599

Eimeria tenella1 Alveolata AY217738 2003   34,750
Epifagus virginiana2 Embryophyta M81884 1993  70,028
Euglena gracilis Euglenozoa X70810 1993 143,171
Euglena longa Euglenozoa AJ294725 2001   73,345
Gracilaria
tenuistipitata

Rhodophyta AY673996 2004 183,883

Guillardia theta Cryptophyta AF041468 1998 121,524
Lotus corniculatus Embryophyta AP002983 2001 150,519
Marchantia
polymorpha

Embryophyta X04465 1986 121,024

Medicago truncatula Embryophyta AC093544 2001 124,033
Mesostigma viride Chlorophyta AF166114 2000 118,360
Nephroselmis
olivacea

Chlorophyta AF137379 1999 200,799

Nicotiana tabacum Embryophyta Z00044 1986 155,939
Nymphaea alba Embryophyta AJ627251 2004 159,930
Odontella sinensis Stramenopiles Z67753 1996 119,704
Oenothera elata Embryophyta AJ271079 2000 163,935
Oryza nivara Embryophyta AP006728 2004 134,494
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Oryza sativa Embryophyta X15901/
AY522329/
AY522331

1989/
2004/
2004

134,525/
134,496/
134,551

Physcomitrella patens Embryophyta AP005672 2003 122,890
Pinus koraiensis Embryophyta AY228468 2003 116,866
Pinus thunbergii Embryophyta D17510 1996 119,707
Porphyra purpurea Rhodophyta U38804 1996 191,028
Psilotum nudum Embryophyta AP004638 2002 138,829
Saccharum hybrid Embryophyta AE009947 2004 141,182
Saccharum
officinarum

Embryophyta AP006714 2004 141,182

Spinacia oleracea Embryophyta AJ400848 2000 150,725
Toxoplasma gondii1 Alveolata U87145 1999 34,996
Triticum aestivum Embryophyta AB042240 2001 134,545
Zea mays Embryophyta X86563 1995 140,384
1plastid genome remnant, nonphotosynthetic protist
2plastid genome, nonphotosynthetic flowering plant
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Table 2.  Isolation of chloroplasts or cpDNA by Sucrose Step Gradient Centrifugation (see
Palmer, 1986; Sandbrink et al., 1989).

1. Prior to extraction, place plants in the dark for 1-2 days to reduce chloroplast starch levels.
Approximately 100 gm or more of leaf tissue is required to get sufficient quantities of
cpDNA.  If the chloroplast isolation is being prepared for RCA at least 20 gm of leaf tissue is
generally necessary.  The quality of the plant tissue is probably the most important criterion
for a successful isolation.  Leaves that are fresher and younger are far superior to older,
senescing leaves.

2. Wash healthy greens leaves in tap water if visibly dirty and cut into small pieces (ca. 2-10
cm2 in surface area).

3. Place 25-50 gm of cut leaves in 400 ml of ice-cold isolation buffer.  Steps 3-5 are done in a
cold room at 4˚ C or on ice.  We have found that the isolation buffer in Sandbrink et al.
(1989) often yields a much purer chloroplast pellet (see recipes at end of protocol).  This
buffer contains higher concentrations of salts and 2-mercapto ethanol.

4. Homogenize in a pre-chilled blender for 5 five-second bursts at high speed.

5. Filter through four layers of cheesecloth and squeeze remaining liquid through the cloth.
Then filter through one layer of miracloth (Calbiochem, catalog number 475855) without
squeezing.

6. Divide filtrate into multiple centrifuge bottles and centrifuge at 1000g for 15 min at 4˚ C.
Pour off supernatant.

7. Resuspend pellet from 10-50 gm of starting material in 7 ml of ice-cold wash buffer using a
soft paintbrush and by vigorous swirling.

8. Gently load the resuspended pellet onto a step gradient consisting of 18 ml of 52% sucrose,
over-layered with 7 ml of 30% sucrose.  The overlay should be added with sufficient mixing
to create a diffuse interface.  It is best to pour the sucrose gradients 1-2 days prior to the
extraction and allow them to sit at 4˚ C to allow for mixing of the interface.  To enhance the
purity of your cpDNA isolation, it is best to use more sucrose gradients, each with material
from a smaller amount of tissue, so that the nuclei can better penetrate the chloroplast band.
At least six sucrose gradients are recommended for 100-200 gm of starting material. When
preparing chloroplasts (rather than cpDNA) we will use three gradients for just 20 gm of
tissue.  We also have experimented with modifying the percentage of sucrose in the step
gradients.  We have found that the optimal percentage varies from one taxon to the next.  For
example, 52/30% gradients work well for most angiosperms, Ginkgo and conifers but we
found that a 44-48 % sucrose in the bottom layer yielded DNA with a much higher
proportion of cpDNA for cycads.
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9. Centrifuge the step gradients at 25,000 RPM for 30-60 min at 4˚ C in a SW-27 (Beckman) or
AH-627 (Sorvall) swinging bucket rotor.

10. Remove the chloroplast band from the 30 - 52% interface using a wide bore pipet, dilute with
3-10 volumes wash buffer, and centrifuge at 1,500g for 15 min at 4˚ C.  We have found that
the use of the Sandbrink wash buffer often improves the purity of the cpDNA.  Multiple
cycles of washing, pelleting, and resuspending of the chloroplasts often much purer cpDNA.

11. Resuspend the chloroplast pellet in wash buffer to a final volume of 2 ml.  Depending on the
size of the final pellet it may be necessary to resuspend the pellet in a larger volume and then
divide resuspended pellet into separate tubes with no more than 3 ml per tube.  If you are
planning to use the chloroplasts for RCA this is the point at which you proceed to the RCA
protocol in Table 3.

12. Add one-tenth volume of a 10 mg/ml solution of self-digested (2 hr at 37˚ C) Pronase
(Calbiochem, catalog number 537088) and incubate for 2 min at room temperature.

13. Gently add one-fifth volume of 1X lysis buffer and mix in by slowly inverting the tube
several times over a period of 10-15 min at room temperature.  We experimented with higher
concentrations of lysis buffer (a 5X lysis buffer versus the normal 1X buffer) and with doing
the lysis at higher temperatures for longer periods of time (37 ˚C for 15-60 min).  In general,
we found that the 5X lysis buffer incubated at 37 ˚C gave much higher yields of cpDNA.  We
also tried several alternative lysis buffers that used Hexadecyltrimethylammonium Bromide (
CTAB, Milligan et al., 1989) or sodium dodecyl sulphate ( SDS, Triboush et al., 1998),  but
in general we did not have much success with these buffers.

14. Centrifuge for 10 min at room temperature in a clinical centrifuge to remove residual starch
and cell wall debris from the chloroplast lysate.  Transfer lysate to a new tube. This step is
optional.

15. Add 1.0 g of technical grade cesium chloride (CsCl) per 1 ml of lysate and add ethidium
bromide (EtBr) to a final concentration of 200 mg/ml.  Fill remaining volume of
ultracentrifuge tubes with a premixed solution of 1 g CsCl per 1 ml of TE buffer.

16. Centrifuge the small CsCl/EtBr gradients (5 ml) in a vertical rotor for 5-8 hr at 65,000 RPM
at 20 ˚C.

17. Remove the band from gradient and if necessary reband in a second gradient or move on to
step 18. High molecular weight chloroplast DNA will be very viscous and easily removed
“en masse” from near the center of the gradient.

18. Remove ethidium bromide by at least three extractions with isopropanol saturated with NaCl
and H20 and dialyze against at least three changes of 2 liters of dialysis buffer over a period
of 1-2 days.

19.  Check purity of cpDNA by doing restriction digests and agarose gel electrophoresis.
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20.  Store the chloroplast DNA at 4 ˚C for short-term and at –20 ˚C for long-term use. Digests of
cpDNA produce well-defined bands whereas nuclear DNA produces so many bands that it
appears as a smear on the gel.

Standard isolation buffer Sandbrink isolation buffer
0.35 M sorbitol 1.25 M NaCl
50 mM tris-HCl, pH 8.0 50 mM tris-HCl, pH 8.0
5 mM EDTA 5 mM EDTA
0.1% BSA (w/v, Sigma A-4503) 1% BSA (w/v, Sigma A-4503)
1.5 mM 2-mercapto ethanol             10 mM 2-mercapto ethanol

5% poly pyrrolidone (PVP-40)

Standard wash buffer Sandbrink wash buffer
0.35M sorbitol 10 mM Tris-HCl, pH 8.0
50 mM Tris-HCl, pH 8.0  5 mM EDTA
25 mM EDTA 10 mM 2-mercapto ethanol

100 ug/ml proteinase K

52% Sucrose Solution 30% Sucrose Solution
52% Sucrose (w/v) 30% Sucrose (w/v)
50mM Tris, pH8.0 50mM Tris, pH8.0
25 mM EDTA 25 mM EDTA

1X Lysis Buffer 5X Lysis Buffer
5% sodium sarcosinate (w/v) 20% sodium sarcosinate (w/v)
50 mM Tris pH 8.0 50 mM Tris pH 8.0
25 mM EDTA 25 mM EDTA

Dialysis Buffer
10 mM Tris, pH 8.0
10mM NaCl
 0.1 mM EDTA
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 Table 3.  Whole chloroplast genome amplification using RCA
A.  Setting up the RCA Reaction

1. Thaw RCA kit (Repli-g, Molecular Staging Inc.) reaction components (1X PBS, 4X Mix,
Solution B, polymerase) on ice.  Prepare the alkaline lysis solution (Solution A) if
necessary.

2. Activate Solution A by adding DTT (must be made fresh before using): for each reaction
31.5 µl of solution A and 3.5 µl 1M of DTT is needed. This can be done while waiting
for lysis in the next step or while components are thawing in the previous step.

3. Add 3 µl of the 5X lysis buffer to 15 µl of isolated chloroplasts (from step 11 in Table 2)
and incubate for 15 min at 37 ºC.  We have attempted to quantify the amount of
chloroplasts in this step but it turns out that this is futile. The success of subsequent steps
is more dependent on the quality and purity of the chloroplasts rather than on the number
of chloroplasts that are added to the lysis reaction.  We have found that the amount of the
chloroplast prep added needs to be optimized for each taxon.

4. Add 50 µl of 1X PBS to the lysate.
5. Add 35 µl of the resulting solution to 35 µl of activated solution A and incubate on ice

for 10 min.
6. While alkaline lysis is proceeding, prepare the reaction cocktail (35 µl H20 + 12.5 µl 4X

Mix + 0.5 µl polymerase) and aliquot it to the reaction tubes.  This is based on 2 µl of
lysate being added to each reaction – adjust volume of water accordingly if using more or
less of the lysate.

7. Stop the alkaline lysis by adding 35 µl of neutralization solution to the lysate.
8. Take 2 µl of lysate and add to each reaction.
9. Incubate at 30 ºC for 16 hr; terminate with 3 min at 65 ºC. Generally the solution looks

cloudy if the reaction has worked.  Store in refrigerator or freezer until proceeding to B.
B. Checking for RCA product

1. Run 2 µl of product on mini-gel to determine if the RCA was successful.
2. If there is product on the mini-gel proceed with restriction digests.
3. Do restriction enzyme digests of 2 µl of RCA product using BstB1 and EcoR1 following

the manufacturers recommendations in 20 µl reactions.  Some enzymes do not digest
RCA product very well.  We have tested a number of enzymes and found that BstB1 and
EcoR1 work best.

2 µl RCA product
2 µl of appropriate enzyme buffer
sufficient H20 to end up with a total volume of 20 µl
10 - 20 units of enzyme

4. Load entire digest into 1% agarose gel and run dye marker to 10 cm
5. Stain, visualize, and photograph gel to assess the quality of the RCA product (see Fig. 2

for an example).
Stocks: 5 M KOH (28g KOH pellets + H20 to 100 ml; exothermic!)

 0.5 M EDTA (18.6g EDTA + 80 ml H20, pH to 8.0; raise volume to
100ml)

Lysis Solution (Solution A): 0.4 ml 5M KOH + 0.1 ml 0.5M EDTA + 4.5 
ml H20

5X Lysis Buffer: 20% sarcosyl, 50 mM Tris pH 8, 25 mM EDTA.
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Table 4.  Chloroplast genome online databases and software.

Database/Software Url Features
Organelle
Genome
Megasequencing
Program - OGMP

http://megasun.bch.umontreal.ca/ogmp/
projects/other/cp_list.html

Lists all sequenced
chloroplast genomes with
NCBI classification,
accession numbers, and
links to GenBank

ExPASy http://us.expasy.org/txt/plastid.txt Lists names of chloroplast
and cyanelle proteins with
abbreviations; also gives
list of completely
sequenced plastid
genomes

NCBI - Organelle
Genomes

http://www.ncbi.nlm.nih.gov:80/
genomes/static/euk_o.html

Lists all completely
sequenced organelle
genomes with accession
numbers, genome size,
and date of submission

Dual Organellar
GenoMe
Annotator
(DOGMA)

http://phylocluster.biosci.utexas.edu/dogma/ A program for annotation
of chloroplast and animal
mitochondrial genomes

Plastid Gene
Order Database

http://www.rs.noda.tus.ac.jp/~kunisawa
/order/front.html

Provides corrected
annotations for
chloroplast genomes with
tools to view gene orders
and extracting sequences

Genomemine http://www.genomics.ceh.ac.uk/cgi-bin/
gmine/ gminemenu.cgi?action=listorganelles
&sort=genome

Provides list of all
sequenced genomes with
details of accession
number, size, numbers of
orfs, percent coding, and
base frequency

DOE Joint
Genome Institute
(JGI) Organelle
Genomics

http://www.jgi.doe.gov/programs/comparative
/top_level/organelles.html

Provides access to several
ongoing projects in
organelle genomics and
access to various tools for
annotating and analyzing
chloroplast and
mitochondrial genomes

A Data Base of
PCR Primers for
the Study of the
Chloroplast
Genome in Plants

http://fbva.forvie.ac.at/200/1859.html Contains information
about universal primers
for chloroplast genomes
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Genome in Plants
BPAnalysis http://www.cs.washington.edu/homes/blanchem

/software.html
A program that computes
minimal breakpoint trees
from gene order data

Derange2 http://www.cs.washington.edu/homes/blanchem
/software.html

A program that computes
an approximation of
minimal edit distances
between pairs of gene
orders

Genome
Rearrangements
In Man and
Mouse (GRIMM)

http://www-cse.ucsd.edu/groups/bioinformatics
/GRIMM/index.html

Rearrangement
algorithms for genomes,
which computes the
minimum possible
number of rearrangement
steps, and determines a
possible evolutionary
scenario using this
number of steps.

Genome
Rearrangements
Analysis under
Parsimony and
other
Phylogenetic
Algorithms
(GRAPPA)

http://www.cs.unm.edu/~moret/GRAPPA/ A program for
constructing phylogenies
using gene order data

Multiple Genome
Rearrangements
(MGR)

http://www-cse.ucsd.edu/groups/bioinformatics
/MGR/index.html

A tool for constructing
phylogenies based on
gene order data

PipMaker and
MultiPipmaker

http://pipmaker.bx.psu.edu/pipmaker/ Used to align 2
(PipMaker ) or multiple
(MultiPipmaker) genomes
and provide dotmatrix and
percent identity plot (PIP)
diagrams of whole
genomes

REPuter http://www.genomes.de/ A program for identifying
repeated sequences in
genomes and provides an
excellent visualization of
the location and sequence
of various types of repeats

FootPrinter http://bio.cs.washington.edu/software.html  A program to identify
putative regulatory
elements in DNA
sequences that requires a
phylogeny
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phylogeny
RepeatFinder http://www.tigr.org/software/ Organizes repeats into

classes
RepeatMasker http://www.repeatmasker.org/ A program that screens

DNA sequences for
interspersed repeats
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Figure 1. Gene map of tobacco chloroplast genome (from Raubeson and Jansen, 2005).

The inner circle shows the four major regions of the genome – the two copies of the inverted

repeat (IRA and IRB) and the large and small single copy regions (LSC and SSC).   The outer

circle represents the tobacco genome with the transcribed regions shown as boxes proportional to

gene size.  Genes inside the circle are transcribed in a clockwise direction, and genes outside of

the circle are transcribed counterclockwise.  The IR extent is shown by the increased width of the

circle representing the tobacco genome.  Genes with introns are marked with asterisks (*).

Arrows between the gene boxes and gene names show those operons known to occur in tobacco

cpDNA. Genes coding for products that function in protein synthesis are dark gray; genes coding

for products that function in photosynthesis are stippled; genes coding for products with various

other functions are lighter gray.

Figure 2.   Gel photo showing chloroplast DNA isolations for Lactuca (Asteraceae) using

DNAseI method and Ranunuculus using the NaCl method (see section II.1).  Lanes 1 and 2 and 4

and 5 were digested with KpnI and HaeII, respectively; lane 3 is a lambda DNA digest used as a

size marker.

Figure 3.  Gel photo showing results of whole chloroplast genome amplification using

RCA of isolated chloroplasts of Ginkgo and Podocarpus.  Lane 2 shows uncut RCA product, and

lanes 3 - 5 show 2 ul of RCA product cut with restriction enzymes.  Lanes 1 and 6 are two

different size markers.  Quality of RCA product can be assessed by performing digests and

running gels such as those shown here.  Nuclear contamination would appear as a smear while

the cpDNA forms discrete bands.  The relative proportion of smear to bands is assessed visually
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from the gel photo.  Upon sequencing, this Podocarpus RCA product was found to be over 80%

cpDNA and the Ginkgo product over 60% cpDNA.

Figure 4.  Screen shot of two Consed (Gordon et al., 1998) windows.  The left panel

shows the main window with the list of contigs, individual reads, and several other features.  The

right panel shows the assembly view of four contigs of Nuphar, illustrating contig order, read

depth, and inconsistent forward-reverse subclone pairs.

Figure 5.  Two web browser windows from DOGMA (Wyman et al., in press).  A.  The

main window for submitting FASTA formatted input files of complete genome sequences or

contigs of portions of the genome.  A number of optional settings are available for the genetic

code for BLASTx, percent identity for protein coding genes and RNAs, e value, and the number

of BLAST hits to return. B.  A view of the annotation window with three panels: lower panel has

several option buttons for extracting sequences, deleting/adding genes, and generating a Sequin

formatted file or text file; middle panel shows tentative gene identifications, clicking on a gene

will display that gene, its BLAST hits, and putative start and stop codons in the upper panel;

upper panel shows the BLAST hits for the psbA gene and some putative stop codons.  The sequin

information window is also shown here. This is the window used to commit to the start and stop

codon and it generates an entry compatible with Sequin.

Figure 6.  MultiPipmaker (Schwartz et al., 2003) output of various published chloroplast

genome sequences.  The reference genome Nicotiana (Z00044) was analyzed against eight other

genome sequences, including Amborella (AJ506156), Arabidopis (AP000423), Calycanthus
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(AJ428413), Lotus (AP002983), Nymphaea (AJ627251), Oenothera (AJ271079), Spinacia

(AJ400848), and Triticum (AB042240).    A. MultiPip view showing sequencing identity (50-

100%) among genomes with identity increasing with darker shades.  Positions of genes and

selected gene names are shown at top, names of taxa are on left.  B.  Selected region of the

MultiPip showing sequence identity between 50-100%.  Arrows on top of map indicate position

of selected genes and numbers above gene indicate the exons for genes with introns.  Note that

this diagram shows that accD is absent from Triticum.

Figure 7.  Reputer (Kurtz and Schleiermacher, 1999) output views of an analysis of the

Medicago chloroplast genome (AC093544).  The search examined forward and inverted repeats

> 20 bp in length with 90% sequence identity.  A.  The visualization window is shown for

forward repeats > 30 bp in length.  B.  A portion of the display of repeats found with the size of

repeat, the coordinates in the genome, the hamming distance, e value, and the DNA sequence of

the repeat given.

Figure 8. Campanulaceae phylogeny based on a maximum parsimony analysis of gene

order changes (modified from Cosner et al., in press).  Number and type of each genomic change

are indicated as e = endpoint of IR, IV = inversion, IS = insertion >5 kb, T = transposition, and D

= deletion/divergence. Only three endpoint characters are homoplasious, changing twice on the

tree.  Brackets indicate the major clades of Campanulaceae.
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