291 research outputs found

    Selective reduction of neurotransmitter release by cAMP-dependent pathways in mouse detrusor

    Get PDF
    Parasympathetic nerve-mediated contractions of detrusor smooth muscle are generated by ATP and acetylcholine (ACh) release from efferent nerve terminals. In humans, ACh is responsible for detrusor contractions in normal human bladders, whereas ATP has an additional role in overactive bladder pathologies. The ATP metabolite, adenosine, relaxes nerve-mediated contractions, with a potential action via presynaptic adenosine A1 receptor activation and subsequent suppression of neuronal ATP release. We investigated the effect of A1 receptor activation and downstream cAMP-dependent pathways on nerve-mediated ATP and ACh release, and detrusor contraction in mouse detrusor. Bladders from male C57BL/6 mice (12 wk) were used for in vitro experiments. Upon electrical field stimulation of intact preparations (detrusor and mucosal layers), ATP or ACh release was measured simultaneously with tension recordings. Activation of A1 receptors by adenosine or exogenous agonists reduced the lower frequency component of nerve-mediated contractions and neuronal ATP release. The A1 receptor antagonist abolished these effects. A1 receptor activation inhibits adenylyl cyclase (AC) activity and cAMP generation. The effect of A1 receptor activation was mimicked by a PKA antagonist but not by modulators of exchange proteins activated by cAMP, demonstrating that modulation of nerve-mediated ATP release is via PKA. Adenosine had no effect on ACh release or the higher frequency component of nerve-mediated contractions. Differential regulation of neurotransmitter release is possible at the detrusor nerve-muscle junction, as demonstrated by A1 receptor activation, and downstream inhibition of AC, cAMP generation, and PKA. The ability to specifically attenuate ATP release offers a potential to target purinergic motor pathways enhanced in overactive bladder pathologies

    Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance

    Get PDF
    While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle’s ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance

    Computational Design and Elaboration of a De Novo Heterotetrameric α-Helical Protein that Selectively Binds an Emissive Abiological (Porphinato)zinc Chromophore

    Get PDF
    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors

    Estimation of bladder contractility from intravesical pressure–volume measurements

    Get PDF
    © 2016 Wiley Periodicals, Inc. Aims: To describe parameters from urodynamic pressure recordings that describe urinary bladder contractility through the use of principles of muscle mechanics. Methods: Subtracted detrusor pressure and voided flow were recorded from patients undergoing filling cystometry. The isovolumetric increase of detrusor pressure, P, of a voluntary bladder contraction before voiding was used to generate a plot of (dP/dt)/P versus P. Extrapolation of the plot to the y-axis and the x-axis generated a contractility parameter, vCE (the maximum rate of pressure development) and the maximum isovolumetric pressure, P0, respectively. Similar curves were obtained in ex vivo pig bladders with different concentrations of the inotropic agent carbachol and shown in a supplement. Results: Values of vCE, but not P0, diminished with age in female subjects. vCE was most significantly associated with the 20–80% duration of isovolumetric contraction t20–80; and a weaker association with maximum flow rate and BCI in women. P0 was not associated with any urodynamic variable in women, but in men was with t20–80 and isovolumetric pressure indices. Conclusions: The rate of isovolumetric subtracted detrusor pressure (t20–80) increase shows a very significant association with indices of bladder contractility as derived from a derived force–velocity curve. We propose that t20–80 is a detrusor contractility parameter (DCP). Neurourol. Urodynam. 36:1009–1014, 2017. © 2016 Wiley Periodicals, Inc

    Sex-specific independent risk factors of urinary incontinence in acute stroke patients:a multicentre registry-based cohort study

    Get PDF
    BackgroundThe presence of urinary incontinence (UI) in acute stroke patients indicates poor outcomes in men and women. However, there is a paucity and inconsistency of data on UI risk factors in this group and hence we conducted a sex-specific analysis to identify risk factors.MethodsData were collected prospectively (2014–2016) from the Sentinel Stroke National Audit Program for patients admitted to four UK hyperacute stroke units. Relevant risk factors for UI were determined by stepwise multivariable logistic regression, presented as odds ratios (OR) and 95% confidence intervals (CI).ResultsThe mean (±SD) age of UI onset in men (73.9 year ± 13.1; n = 1593) was significantly earlier than for women (79.8 year ± 12.9; n = 1591: p < 0.001). Older age between 70 and 79 year in men (OR = 1.61: CI = 1.24–2.10) and women (OR = 1.55: CI = 1.12–2.15), or ≥80 year in men (OR = 2.19: CI = 1.71–2.81), and women (OR = 2.07: CI = 1.57–2.74)–reference: <70 year–both predicted UI. In addition, intracranial hemorrhage (reference: acute ischemic stroke) in men (OR = 1.64: CI = 1.22–2.20) and women (OR = 1.75: CI = 1.30–2.34); and prestroke disability (mRS scores ≥ 4) in men (OR = 1.90: CI = 1.02–3.5) and women (OR = 1.62: CI = 1.05–2.49) (reference: mRS scores < 4); and stroke severity at admission: NIHSS scores = 5–15 in men (OR = 1.50: CI = 1.20–1.88) and women (OR = 1.72: CI = 1.37–2.16), and NIHSS scores = 16–42 in men (OR = 4.68: CI = 3.20–6.85) and women (OR = 3.89: CI = 2.82–5.37) (reference: NIHSS scores = 0–4) were also significant. Factors not selected were: a history of congestive heart failure, hypertension, atrial fibrillation, diabetes and previous stroke.ConclusionsWe have identified similar risk factors for UI after stroke in men and women including age >70 year, intracranial hemorrhage, prestroke disability and stroke severity

    Contractile function of detrusor smooth muscle from children with posterior urethral valves – the role of fibrosis

    Get PDF
    IntroductionPosterior urethral valves (PUV) is the most common cause of congenital bladder outflow obstruction with persistent lower urinary tract and renal morbidities. There is a spectrum of functional bladder disorders ranging from hypertonia to bladder underactivity, but the aetiology of these clinical conditions remains unclear.Aims and objectivesWe tested the hypothesis that replacement of detrusor muscle with non-muscle cells and excessive deposition of connective tissue is an important factor in bladder dysfunction with PUV. We used isolated detrusor samples from children with PUV and undergoing primary or secondary procedures in comparison to age-matched data from children with functionally normal bladders. In vitro contractile properties, as well as passive stiffness, were measured and matched to histological assessment of muscle and connective tissue. We examined if a major pathway for fibrosis was altered in PUV tissue samples.MethodsIsometric contractions were measured in vitro in response to either stimulation of motor nerves to detrusor or exposure to cholinergic and purinergic receptor agonists. Passive mechanical stiffness was measured by rapid stretching of the tissue and recording changes to muscle tension. Histology measured the relative amounts of detrusor muscle and connective tissue. Multiplex quantitative immunofluorescence labelling using five epitope markers was designed to determine cellular pathways, in particular the Wnt-signalling pathway, responsible for any changes to excessive deposition of connective tissue.Results and DiscussionPUV tissue showed equally reduced contractile function to efferent nerve stimulation or exposure to contractile agonists. Passive muscle stiffness was increased in PUV tissue samples. The smooth muscle:connective tissue ratio was also diminished and mirrored the reduction of contractile function and the increase of passive stiffness. Immunofluorescence labelling showed in PUV samples increased expression of the matrix metalloproteinase, MMP-7; as well as cyclin-D1 expression suggesting cellular remodelling. However, elements of a fibrosis pathway associated with Wnt-signalling were either reduced (β-catenin) or unchanged (c-Myc). The accumulation of extracellular matrix, containing collagen, will contribute to the reduced contractile performance of the bladder wall. It will also increase tissue stiffness that in vivo would lead to reduced filling compliance.ConclusionsReplacement of smooth muscle with fibrosis is a major contributory factor in contractile dysfunction in the hypertonic PUV bladder. This suggests that a potential strategy to restore normal contractile and filling properties is development of the effective use of antifibrotic agents

    Meta-analysis of changes in the levels of catecholamines and blood pressure with continuous positive airway pressure therapy in obstructive sleep apnea

    Get PDF
    Stress from obstructive sleep apnea (OSA) stimulates catecholamine release consequently exacerbating hypertension. However, different studies have shown a conflicting impact of continuous positive airway pressure (CPAP) treatment in patients with OSA on catecholamine levels and blood pressure. We aimed to examine changes to catecholamine levels and blood pressure in response to CPAP treatment. We conducted a meta‐analysis of data published up to May 2020. The quality of the studies was evaluated using standard tools for assessing the risk of bias. Meta‐analysis was conducted using RevMan (v5.3) and expressed in standardized mean difference (SMD) for catecholamines and mean difference (MD) for systolic (SBP) and diastolic blood pressure (DBP). A total of 38 studies met our search criteria; they consisted of 14 randomized control trials (RCT) totaling 576 participants and 24 prospective cohort studies (PCS) of 547 participants. Mean age ranged between 41 and 62 year and body mass index between 27.2 and 35.1 kg/m(2). CPAP treatment reduced 24‐hour urinary noradrenaline levels both in RCT (SMD = −1.1; 95% confidence interval (CI): −1.63 to − 0.56) and in PCS (SMD = 0.38 (CI: 0.24 to 0.53). SBP was also reduced by CPAP treatment in RCT (4.8 mmHg; CI: 2.0‐7.7) and in PCS (7.5 mmHg; CI: 3.3‐11.7). DBP was similarly reduced (3.0 mmHg; CI: 1.4‐4.6) and in PCS (5.1 mmHg; CI: 2.3‐8.0). In conclusion, CPAP treatment in patients with OSA reduces catecholamine levels and blood pressure. This suggests that sympathetic activity plays an intermediary role in hypertension associated with OSA‐related stress

    Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction

    Get PDF
    Cardiac arrhythmias are associated with raised intracellular [Ca2+] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca2+-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca2+-dependent phosphatase, calcineurin. Intracellular [Ca2+] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2. Raised [Ca2 +]i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca2+]i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca2+-independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca2+]i. PP2A had no role. Conduction velocity was reduced by raised [Ca2+]i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca2+] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.Centro de Investigaciones Cardiovasculare

    Detection and Aggregation of Listeria monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates

    Get PDF
    Magnetic nanoshells with tailored surface chemistry can enhance bacterial detection and separation technologies. This work demonstrated a simple technique to detect, capture, and aggregate bacteria with the aid of end-functionalized polyclonal antibody gold-coated magnetic nanoshells (pAb-Lis-AuMNs) as surface-enhanced Raman spectroscopy (SERS) probes. Listeria monocytogenes were used as the pathogenic bacteria and the pAb-Lis-AuMNs, 300 nm diameter, were used as probes allowing facile magnetic separation and aggregation. An optimized covalent bioconjugation procedure between the magnetic nanoshells and the polyclonal antibody was performed at pH six via a carbodiimide crosslinking reaction. Spectroscopic and morphological characterization techniques confirmed the fabrication of stable pAb-Lis-AuMNs. The resulting pAb-Lis-AuMNs acted as a SERS probe for L. monocytogenes based on the targeted capture via surface binding interactions and magnetically induced aggregation. Label-free SERS measurements were recorded for the minimum detectable amount of L. monocytogenes based on the SERS intensity at the 1388 cm−1 Raman shift. L. monocytogenes concentrations exhibited detection limits in the range of 104–107 CFU ml−1, before and after aggregation. By fitting these concentrations, the limit of detection of this method was ∼103 CFU ml−1. Using a low-intensity magnetic field of 35 G, pAb-Lis-AuMNs aggregated L. monocytogenes as demonstrated with microscopy techniques, including SEM and optical microscopy. Overall, this work presents a label-free SERS probe method comprised of a surface-modified polyclonal antibody sub-micron magnetic nanoshell structures with high sensitivity and magnetic induced separation that could lead to the fabrication of multiple single-step sensors
    corecore