8,490 research outputs found

    Analytic Reconstruction of heavy-quark two-point functions at O(\alpha_s^3)

    Full text link
    Using a method previously developed, based on the Mellin-Barnes transform, we reconstruct the two-point correlators in the vector, axial, scalar and pseudoscalar channels from the Taylor expansion at q^2=0, the threshold expansion at q^2=4m^2 and the OPE at q^2\rightarrow -\infty, where m is the heavy quark mass. The reconstruction is analytic and systematic and is controlled by an error function which becomes smaller as more terms in those expansions are known.Comment: 19 pages, 11 figure

    Radio observations of evaporating objects in the Cygnus OB2 region

    Get PDF
    We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at frequencies of 325 and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating evaporating gas globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.Fil: Isequilla, Natacha Laura. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Benaglia, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Ishwara Chandra, C. H.. National Center For Radio Astrophysics; IndiaFil: del Palacio, Santiago. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Phase and Charge reentrant phase transitions in two capacitively coupled Josephson arrays with ultra-small junction

    Full text link
    We have studied the phase diagram of two capacitively coupled Josephson junction arrays with charging energy, EcE_c, and Josephson coupling energy, EJE_J. Our results are obtained using a path integral Quantum Monte Carlo algorithm. The parameter that quantifies the quantum fluctuations in the i-th array is defined by αiEciEJi\alpha_i\equiv \frac{E_{{c}_i}}{E_{J_i}}. Depending on the value of αi\alpha_i, each independent array may be in the semiclassical or in the quantum regime: We find that thermal fluctuations are important when α1.5\alpha \lesssim 1.5 and the quantum fluctuations dominate when 2.0α2.0 \lesssim \alpha . We have extensively studied the interplay between vortex and charge dominated individual array phases. The two arrays are coupled via the capacitance CinterC_{{\rm inter}} at each site of the lattices. We find a {\it reentrant transition} in Υ(T,α)\Upsilon(T,\alpha), at low temperatures, when one of the arrays is in the semiclassical limit (i.e. α1=0.5\alpha_{1}=0.5 ) and the quantum array has 2.0α22.52.0 \leq\alpha_{2} \leq 2.5, for the values considered for the interlayer capacitance. In addition, when 3.0α2<4.03.0 \leq \alpha_{2} < 4.0, and for all the inter-layer couplings considered above, a {\it novel} reentrant phase transition occurs in the charge degrees of freedom, i.e. there is a reentrant insulating-conducting transition at low temperatures. We obtain the corresponding phase diagrams and found some features that resemble those seen in experiments with 2D JJA.Comment: 25 Latex pages including 8 encapsulated poscript figures. Accepted for publication in Phys. Rev B (Nov. 2004 Issue

    Evaluación de las condiciones de mezcla y su influencia sobre el cloro residual entanques de compensación de un sistema de distribución de agua potable

    Get PDF
    We performed a real scale evaluation of mixing conditions and its influence on water quality in a compensation tank of drinking-water distribution system located in the city of Cali, Colombia. The hydrodynamic study with continuous injection of tracer, and temperature and free chlorine measurements for identifying the mixing regime in the tank’s interior, residence time, thermal stratification, and chlorine variations in the stored water showed the typical characteristics of a compensation tank. We concluded that water recirculation, inadequate water exchange, low moment fluxes associated with low velocity flows, and punctual thermal stratification could lead to high water age, high residence times in the tank, inadequate mixing, and important loss of free residual chlorine. The methodology developed is suitable for evaluation and optimization of compensation tanks of drinking water distribution systems.Realizamos una evaluación a escala real de las condiciones de mezcla y su influencia en la calidad del agua en un tanque de compensación del sistema de distribución de agua potable ubicado en la ciudad de Cali, Colombia. El estudio hidrodinámico con inyección continua de marcador y mediciones de temperatura y cloro libre para identificar el régimen de mezcla en el interior del tanque, el tiempo de residencia, la estratificación térmica y las variaciones de cloro en el agua almacenada mostraron las características típicas de un tanque de compensación. Llegamos a la conclusión de que la recirculación de agua, el intercambio de agua inadecuado, los flujos de momento bajos asociados con los flujos de baja velocidad y la estratificación térmica puntual podrían conducir a una alta edad del agua, tiempos de residencia elevados en el tanque, mezcla inadecuada y pérdida importante de cloro residual libre. La metodología desarrollada es adecuada para la evaluación y optimización de tanques de compensación de sistemas de distribución de agua potable

    Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response.

    Get PDF
    Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV) infection by promoting a more potent neutralizing antibody (NAb) response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections

    Effects of physics beyond the standard model on the neutrino charge radius: an effective Lagrangian approach

    Full text link
    In this work, we look for possible new physics effects on the electromagnetic charge and anapole form factors, fQ(q2)f_Q(q^2) and fA(q2)f_A(q^2), for a massless Dirac neutrino, when these quantities are calculated in the context of an effective electroweak Yang-Mills theory, which induces the most general SUL(2)SU_L(2)--invariant Lorentz tensor structure of nonrenormalizable type for the WWγWW\gamma vertex. It is found that in this context, besides the standard model contribution, the additional contribution to fQ(q2)f_{Q}(q^2) and fA(q2)f_{A}(q^2) (fQOW(q2)f_{Q}^{O_W}(q^2) and fAOW(q2)f_{A}^{O_W}(q^2), respectively) are gauge independent and finite functions of q2q^2 after adopting a renormalization scheme. These form factors, fQOW(q2)f_{Q}^{O_W}(q^2) and fAOW(q2)f_{A}^{O_W}(q^2), get contribution at the one loop level only from the proper neutrino electromagnetic vertex. Besides, the relation fQeff(q2)=q2fAeff(q2)f_{Q}^{eff}(q^2)=q^2f_{A}^{eff}(q^2) (fQeff(q2)=fQSM(q2)+fQOW(q2)f_{Q}^{eff}(q^2)=f_{Q}^{SM}(q^2)+f_{Q}^{O_W}(q^2), fAeff(q2)=fASM(q2)+fAOW(q2)f_{A}^{eff}(q^2)=f_{A}^{SM}(q^2)+f_{A}^{O_W}(q^2)) is still fulfilled and hence the relation aνeff=eff/6a_{\nu}^{eff} = ^{eff} /6 (aνeff=aνSM+aνOWa_{\nu}^{eff} = a_{\nu}^{SM}+ a_{\nu}^{O_W}, eff=SM+<rν2>OW ^{eff} = ^{SM}+< r^2_{\nu} > ^{O_W})is gotten, just as in the SM. Using the experimental constraint on the anomalous WWγWW\gamma vertex, a value for the additional contribution to the charge radius of |^{O_W}| \lsim 10^{-34} cm^2 is obtained, which is one order of magnitude lower than the SM value.Comment: 9 pages, 3 figure

    A Born-Infeld-like f(R) gravity

    Full text link
    Several features of an f(R)f(R) theory in which there is a maximum value for the curvature are analyzed. The theory admits the vaccuum solutions of GR, and also the radiation evolution for the scale factor of the standard cosmological model. Working in the Jordan frame, a complete analysis of the phase space is performed, and its results supported with examples obtainted by numerical integration. In particular, we showed that theory has nonsingular cosmological solutions which after the bounce enter a phase of de Sitter expansion and subsequently relax to a GR-like radiation-dominated evolution.Comment: Latex file, 14 pages, 7 figures (jpg format), including more detailed discussions than previous version, accepted for publication in Physical Review

    Cavitation and bubble collapse in hot asymmetric nuclear matter

    Full text link
    The dynamics of embryonic bubbles in overheated, viscous and non-Markovian nuclear matter is studied. It is shown that the memory and the Fermi surface distortions significantly affect the hinderance of bubble collapse and determine a characteristic oscillations of the bubble radius. These oscillations occur due to the additional elastic force induced by the memory integral.Comment: Revtex file (10 pages) and 3 figure

    Inhomogeneous vacuum energy

    Get PDF
    Vacuum energy remains the simplest model of dark energy which could drive the accelerated expansion of the Universe without necessarily introducing any new degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in general relativity. Although the four-velocity of vacuum energy is undefined, an interacting vacuum has an energy transfer and the vacuum energy defines a particular foliation of spacetime with spatially homogeneous vacuum energy in cosmological solutions. It is possible to give a consistent description of vacuum dynamics and in particular the relativistic equations of motion for inhomogeneous perturbations given a covariant prescription for the vacuum energy, or equivalently the energy transfer four-vector, and we construct gauge-invariant vacuum perturbations. We show that any dark energy cosmology can be decomposed into an interacting vacuum+matter cosmology whose inhomogeneous perturbations obey simple first-order equations.Comment: 8 pages; v2 clarified discussion of Chaplygin gas model, references adde
    corecore