108 research outputs found

    Variable kinematic beam elements coupled via Arlequin method

    Get PDF
    In this work, beamelements based on different kinematic assumptions are combined through the Arlequinmethod. Computational costs are reduced assuming refined models only in those zones with a quasi-three-dimensional stress field. Variable kinematics beamelements are formulated on the basis of a unified formulation (UF). This formulation is extended to the Arlequinmethod to derive matrices related to the coupling zones between high- and low-order kinematicbeam theories. According to UF, a N-order polynomials approximation is assumed on the beam cross-section for the unknown displacements, being N a free parameter of the formulation. Several hierarchical finite elements can be formulated. Part of the structure can be accurately modelled with computationally cheap low-order elements, part calls for computationally demanding high-order elements. Slender, moderately deep and deep beams are investigated. Square and I-shaped cross-sections are accounted for. A cross-ply laminated composite beam is considered as well. Results are assessed towards Navier-type analytical models and three-dimensional finite element solutions. The numerical investigation has shown that Arlequinmethod in the context of a hierarchical formulation effectively couples sub-domains having different order finite elements without loss of accuracy and reducing the computational cos

    Coarse-Grained Descriptions

    Get PDF
    Coarse-grained approaches are widely considered for analyzing multiatomic systems. They are based on the used of simplified interatomic potentials, that allow deriving most of the macroscopic thermomechanical properties of materials. Molecular dynamics can coarsened at its turn leading to dissipative particle dynamics and multi-particle collision dynamics. Finally, for addressing larger systems, Langevin and diffusion equations are usually considered; the last in very close connection with Brownian mechanics and its fractional variant. This chapter revisits all these physical descriptions

    A three-scale domain decomposition method for the 3D analysis of debonding in laminates

    Full text link
    The prediction of the quasi-static response of industrial laminate structures requires to use fine descriptions of the material, especially when debonding is involved. Even when modeled at the mesoscale, the computation of these structures results in very large numerical problems. In this paper, the exact mesoscale solution is sought using parallel iterative solvers. The LaTIn-based mixed domain decomposition method makes it very easy to handle the complex description of the structure; moreover the provided multiscale features enable us to deal with numerical difficulties at their natural scale; we present the various enhancements we developed to ensure the scalability of the method. An extension of the method designed to handle instabilities is also presented

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore