474 research outputs found

    High-Resolution Energy and Intensity Measurements with CVD Diamond at REX-ISOLDE

    Get PDF
    A novel beam instrumentation device for the HIE-REX (High In-tensity and Energy REX) upgrade has been developed and tested at the On-Line Isotope Mass Separator ISOLDE, located at the European Laboratory for Particle Physics (CERN). This device is based on CVD diamond detector technology and is used for measuring the beam intensity, particle counting and measuring the energy spectrum of the beam. An energy resolution of 0.6% was measured at a carbon ion energy of 22.8 MeV. This corresponds to an energy spread of ± 140 keV

    A Multilevel Analysis of Implicit and Explicit CSR in French and UK Professional Sport

    Get PDF
    Research question: This paper examines the ways in which French and UK professional sports clubs implement and communicate their CSR policies. In addition to identifying similarities and differences between CSR practices in the two countries, our analysis extends and adapts the implicit-explicit CSR framework to the field of sport. Research methods: We used a mixed methods approach to analyse qualitative and quantitative data on the CSR strategies of 66 professional rugby union (Top 14, Aviva Premiership Rugby) and football (Ligue 1, Premier League) clubs over the 2017-2018 season. Results and findings: We found major differences in CSR communication between France and the UK. Communication by French clubs tends to highlight sport’s values, involve few media channels, whereas communication by UK clubs explicitly vaunts their social responsibility and involves numerous channels. In the case of CSR implementation, there are similarities between French and UK clubs, especially in the fields their CSR initiatives cover (e.g., health, diversity), as well as differences. However, the scope of initiatives varies more between sports than between countries, with football demonstrating a more international outlook than rugby. Implications: This article expands Matten and Moon’s (2008) implicit-explicit CSR framework by identifying the influence of interactions between sectorial/field-level factors and national/macro-level factors on CSR practices, and by distinguishing between CSR communication and CSR implementation. Our results throw light on the shift from implicit to explicit CSR in French professional sport

    Electrical and thermal spin accumulation in germanium

    Full text link
    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.Comment: 7 pages, 3 figure

    Spinoza

    Get PDF
    "Spinoza", second edition. Encyclopedia entry for the Springer Encyclopedia of EM Phil and the Sciences, ed. D. Jalobeanu and C. T. Wolfe

    Crossover from spin accumulation into interface states to spin injection in the germanium conduction band

    Full text link
    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of nn-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.Comment: 5 pages, 4 figure

    Systematic Investigation of the Permeability of Androgen Receptor PROTACs.

    Get PDF
    Bifunctional molecules known as PROTACs simultaneously bind an E3 ligase and a protein of interest to direct ubiquitination and clearance of that protein, and they have emerged in the past decade as an exciting new paradigm in drug discovery. In order to investigate the permeability and properties of these large molecules, we synthesized two panels of PROTAC molecules, constructed from a range of protein-target ligands, linkers, and E3 ligase ligands. The androgen receptor, which is a well-studied protein in the PROTAC field was used as a model system. The physicochemical properties and permeability of PROTACs are discussed.This work was funded by Alzheimer’s Research UK (grant: ARUK-2015DDI-CAM), with support from the ALBORADA Trust. The ALBORADA Drug Discovery Institute is core funded by Alzheimer’s Research UK (registered charity No. 1077089 and SC042474)

    A novel role for the root cap in phosphate uptake and homeostasis

    Get PDF
    The root cap has a fundamental role in sensing environmental cues as well as regulating root growth via altered meristem activity. Despite this well-established role in the control of developmental processes in roots, the root cap's function in nutrition remains obscure. Here, we uncover its role in phosphate nutrition by targeted cellular inactivation or phosphate transport complementation in Arabidopsis, using a transactivation strategy with an innovative high-resolution real-time P-33 imaging technique. Remarkably, the diminutive size of the root cap cells at the root-to-soil exchange surface accounts for a significant amount of the total seedling phosphate uptake (approximately 20%). This level of Pi absorption is sufficient for shoot biomass production (up to a 180% gain in soil), as well as repression of Pi starvation-induced genes. These results extend our understanding of this important tissue from its previously described roles in environmental perception to novel functions in mineral nutrition and homeostasis control

    Nanoscale electrical analyses of axial-junction GaAsP nanowires for solar cell applications

    Get PDF
    Axial p-n and p-i-n junctions in GaAs0.7P0.3 nanowires are demonstrated and analyzed using electron beam induced current microscopy. Organized self-catalyzed nanowire arrays are grown by molecular beam epitaxy on nanopatterned Si substrates. The nanowires are doped using Be and Si impurities to obtain p- and n-type conductivity, respectively. A method to determine the doping type by analyzing the induced current in the vicinity of a Schottky contact is proposed. It is demonstrated that for the applied growth conditions using Ga as a catalyst, Si doping induces an n-type conductivity contrary to the GaAs self-catalyzed nanowire case, where Si was reported to yield a p-type doping. Active axial nanowire p-n junctions having a homogeneous composition along the axis are synthesized and the carrier concentration and minority carrier diffusion lengths are measured. To the best of our knowledge, this is the first report of axial p-n junctions in self-catalyzed GaAsP nanowires
    corecore