115 research outputs found
Long quantum channels for high-quality entanglement transfer
High-quality quantum-state and entanglement transfer can be achieved in an
unmodulated spin bus operating in the ballistic regime, which occurs when the
endpoint qubits A and B are coupled to the chain by an exchange interaction
comparable with the intrachain exchange. Indeed, the transition amplitude
characterizing the transfer quality exhibits a maximum for a finite optimal
value , where is the channel length. We show that
scales as for large and that it ensures a
high-quality entanglement transfer even in the limit of arbitrarily long
channels, almost independently of the channel initialization. For instance, the
average quantum-state transmission fidelity exceeds 90% for any chain length.
We emphasize that, taking the reverse point of view, should be
experimentally constrained, high-quality transfer can still be obtained by
adjusting the channel length to its optimal value.Comment: 12 pages, 9 figure
Pretty good state transfer in qubit chains-The Heisenberg Hamiltonian
Pretty good state transfer in networks of qubits occurs when a continuous-time quantum walk allows the transmission of a qubit state from one node of the network to another, with fidelity arbitrarily close to 1. We prove that in a Heisenberg chain with n qubits, there is pretty good state transfer between the nodes at the jth and (n − j + 1)th positions if n is a power of 2. Moreover, this condition is also necessary for j = 1. We obtain this result by applying a theorem due to Kronecker about Diophantine approximations, together with techniques from algebraic graph theory
Fault-Tolerant Exact State Transmission
We show that a category of one-dimensional XY-type models may enable
high-fidelity quantum state transmissions, regardless of details of coupling
configurations. This observation leads to a fault- tolerant design of a state
transmission setup. The setup is fault-tolerant, with specified thresholds,
against engineering failures of coupling configurations, fabrication
imperfections or defects, and even time-dependent noises. We propose the
implementation of the fault-tolerant scheme using hard-core bosons in
one-dimensional optical lattices.Comment: 5 pages and 4 figure
Linking lifestyle and foraging strategies of marine bacteria: selfish behaviour of particle-attached bacteria in the northern Adriatic Sea
Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a ‘pioneer’ scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers
Entanglement-enhanced testing of multiple quantum hypotheses
Quantum hypothesis testing has been greatly advanced for the binary discrimination of two states, or two channels. In this setting, we already know that quantum entanglement can be used to enhance the discrimination of two bosonic channels. Here, we remove the restriction of binary hypotheses and show that entangled photons can remarkably boost the discrimination of multiple bosonic channels. More precisely, we formulate a general problem of channel-position finding where the goal is to determine the position of a target channel among many background channels. We prove that, using entangled photons at the input and a generalized form of conditional nulling receiver at the output, we may outperform any classical strategy. Our results can be applied to enhance a range of technological tasks, including the optical readout of sparse classical data, the spectroscopic analysis of a frequency spectrum, and the determination of the direction of a target at fixed range
Unexpected discovery: a guided-inquiry experiment on the reaction kinetics of zinc with sulfuric acid
The role of practical work in the training of student teachers is central to the development of their future pedagogy and practice. However, not all laboratory based activities give sufficient challenge in the development of both cognitive and practical skills. The activity proposed in this paper helps reinforce an understanding of reaction kinetics through a study of the reaction of zinc with sulfuric acid. In this study, the observed reaction kinetics conflicted with the typical expectation, which offered a problem to motivate an inquiry-based activity
Spin dynamics in finite cyclic XY model
Evolution of the z-component of a single spin in the finite cyclic XY spin
1/2 chain is studied. Initially one selected spin is polarized while other
spins are completely unpolarized and uncorrelated. Polarization of the selected
spin as a function of time is proportional to the autocorrelation function at
infinite temperature. Initialization of the selected spin gives rise to two
wave packets moving in opposite directions and winding over the circle. We
express the correlation function as a series in winding number and derive
tractable approximations for each term. This allows to give qualitative
explanation and quantitative description to various finite-size effects such as
partial revivals and transition from regular to erratic behavior.Comment: v2: substantially extended; v3: references added, accepted to Phys.
Rev.
Fundamental limits of repeaterless quantum communications
Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching’, we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters
- …