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We show that a category of one-dimensional XY-type models may enable high-fidelity quantum state
transmissions, regardless of details of coupling configurations. This observation leads to a fault-tolerant
design of a state transmission setup. The setup is fault-tolerant, with specified thresholds, against
engineering failures of coupling configurations, fabrication imperfections or defects, and even
time-dependent noises. We propose an experimental implementation of the fault-tolerant scheme using
hard-core bosons in one-dimensional optical lattices.

Q
uantum devices require fault tolerant designs to tackle fabrication defects and environmental impacts, as
exemplified by the fault-tolerant quantum computer. One of such quantum devices is a physical setup
that reliably transmits a quantum state from one location to another. The quantum state transmission

(QST) may be made through spin chains, or by ultracold atoms in one-dimensional (1D) optical lattices1–5. The
quality of a QST depends on the coupling configurations, i.e., the coupling or tunnelling constants Ji,i11 as a
function of site indices i. It has been demonstrated that a QST cannot be achieved with perfect fidelity in a uniform
spin chain with XY spin couplings, whereas it is possible in two cases where individual couplings are specially
engineered: perfect state transfer (PST)6 and high-fidelity state transfer using weakly coupled external qubits7,8.
The fidelity of the latter can be achieved with arbitrary precision. It has been widely believed that most config-
urations do not enable high-fidelity QSTs3,9.

This paper carefully examines diverse coupling configurations. To our surprise, the fidelity of QST is hardly
determined by details but rather on the general architecture of Ji,i11. Most configurations with larger values of
Ji,i11 in middle sites of the chains work equally well. In other words, having particular configurations, smaller on
the ends and bigger in the middle, is crucial for enabling high-fidelity state transmission, regardless of specific
details of the couplings. We find that the fidelity is fault-tolerant against random perturbations to coupling
constants and site energies due to the fabrication processes. We also take into account the time-dependent
random noise, which simulates the noisy effects due to environmental variables. Significantly, we show that
the quantum states transmissions are hardly influenced by time-dependent noise. We then specify the fault-
tolerant thresholds for these failures, defects and noises. This observation leads to a fault-tolerant design of state
transmission setup, which is robust against engineering failures in the coupling configurations, fabrication
imperfections or defects, and even time-dependent noise. Unlike the strategy in fault-tolerant quantum com-
puter, our proposal does not require dynamical control and relies only on natures of the setup. It is a self-protected
quantum device.

We suggest that this setup could be realised experimentally by means of ultracold bosons in 1D optical lattices,
as in the hard-core limit this system can be mapped into an effective spin one-half XY model12. This system could
be engineered by using the standard optical lattice technology and additional laser beams for tuning the couplings
Ji,i11 individually. It might be more feasible to use the spatial light modulator technology, that in principle allows
to create arbitrary potentials and couplings for ultracold atoms17–19, and could be used to design specific coupling
configurations. The fault tolerance ensures high-fidelity QST in presence of engineering failures, fabrication
imperfections or defects, and noise.

Consider a spin chain described by a ferromagnetic Hamiltonian with couplings Ji,i11 between sites i and i 1 1,

H~{
XN{1

i~1

Ji,iz1 XiXiz1zYiYiz1ð Þ, ð1Þ
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where Ji,i11 are allowed to be arbitrary. The conventional XY model is
a special case when Ji,i11 5 constant. Xi, Yi are the Pauli matrices
acting on spin i. N is the size of the spin chain. We use N 5 130 for
numerical illustrations, except examples where we show that the
results presented here are almost size-independent. The z-compon-
ent of the total spin or magnon is conserved. The model is the hard-
core boson limit of the Bose-Hubbard Hamiltonian, as discussed
later.

In quantum information theory, quantum state transfer often
refers to transferring an unknown state, which is written as jw(0)æ
5aj0æ 1 bj1æ and is initially encoded in the first spin of the chain.
Here j0æ and j1æ correspond to spin down and up states, respectively.
The state jw(0)æ is transferred to the other end as a result of free spin
evolution. The fidelity of quantum state transfer is f 5 jjaj2 1 Feid

jbj2j, where F is the fidelity of transmitting a known state j1æ from the
first spin to the last. The additional phase d could be removed by
applying a phase gate exp(2id) to the last site as in ref. 6. When F 5
1, the transmission is exact4, f 5 1. Normally, F is considerably
smaller than f. For instance, an almost perfect state transfer f 5
0.97 for the state with jbj2 5 1/3 only requires F 5 0.9. We will
therefore focus on almost exact state transmissions with maximal
fidelity Fmax . 0.9 (see ref. 20), where f could be more than 0.97.
In practice, most values of Fmax considered in the present paper are
greater than 0.95.

The Hamiltonian can be numerically diagonalized, specifically H
5 WHdW{, where Hd is diagonal. The propagator of the Hamiltonian
is therefore U tð Þ~e{iHt~We{iHd tW{. With this propagator, we
can simulate the time evolution of quantum states for various coup-
ling configurations.

Results
Fault-tolerant QST: configurations. We start by considering the
following configuration of the couplings in eq. (1), Jw(i) ; {J1,2 5
JN21,N 5 J0, Ji,i11 5 J elsewhere}, that will be referred to as the weak-
coupling limit. For simplicity, we fix J 5 5 1 throughout this paper,
without loss of generality. This corresponds to expressing time in
units of /J. In Fig. 1 we show a density plot of the fidelity as a
function of time and of the ratio J0/J. This figure shows that, for
fixed values of J0/J the fidelity reaches a maximal value Fmax at
specific times. The regions corresponding to an almost exact state
transmissions (Fmax . 0.9), are coloured in red. With increasing J0/J,
Fmax decreases, indicating that weaker couplings at the two ends are
in favour of an almost exact state transmission (e.g. Fmax 5 0.95 at J0/J
5 0.05). In particular, we find that the maximal value for having Fmax

. 0.9 is J0/J 5 3/20. Our numerical findings are consistent with the
results of the perturbation theory in ref. 8. In addition, the time tMF at
which the first maximal fidelity appears, decreases with J0/J as tMF /
J/J0.

We now turn to other coupling configurations in the regions of the
two ends, shown in Fig. 2(a). Configurations {1}, {2} and {4} possess
inversion symmetry with respect to the centre of the chain, and are all
characterised by a similar efficiency in the state transmission. This is
shown by Fig. 2(b), where we plot the time evolution of the fidelity
(here for J0/J 5 0.05). In all three cases, though the oscillation pat-
terns are dramatically different, the fidelity reaches a maximal value
Fmax < 0.95. Instead, in the case of configuration {3} – that is not
invariant under parity – the maximal fidelity is low, Fmax 5 0.28.

From the experimental point of view, it may be easier to imple-
ment QSTs if sender’s and receiver’s sites are not at the ends but
inside the chain. In order to analyse this case, we consider two further
configurations, with the sender at the fourth site and the receiver at
site N 2 3 (with different coupling arrangements), cases {5} and {6}.
The time evolution of the corresponding fidelity is shown in Fig. 2(c).
This figure suggests that when the sender and receiver are weakly
coupled to both their nearest neighbours, an almost exact state
transmission can be achieved (Fmax 5 0.95 in the configuration

Figure 1 | Density plot of the fidelity as a function of time t and J0/J. Here

and in all figures time is expressed in units of /J, J1,2 5 JN21,N 5 J0.

Figure 2 | (a) Different configurations of the couplings Ji,i11. Magenta and

blue colours are used to differentiate the sender’s and the receiver’s sites.

(b) The fidelity as a function of time t for cases {1–4}, for J0/J 5 0.05.

(c) The fidelity as a function of time t for cases {5} and {6}, with the same

parameters as in (b). Note that in case {5} there is only one neighbour weak

coupling J0 at the sender’s or the receiver’s sites while there is two in

case {6}.
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{6}). Instead, when the outer coupling are stronger (case {5}), the
transmission inside the chain – between sender and receiver – is
weakened. This is verified by our numerical calculations.

Fault-tolerant QST: different types of J. We now consider different
configurations of the couplings Ji,i11, see Fig. 3(a). Namely, we
analyse the cases of a triangle configuration Ji,i11 5 (2J/N)min(i, N
2 i), parabola Ji,i11 5 20.95J(i 2 N/2)2/(1 2 N/2)2 1 J, exponential
Ji,i11 5 J exp[(ln 0.05)(i 2 N/2)2/(1 2 N/2)2], PST

Ji,iz1~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i N{ið Þð Þ

p .
N , and trapezia Ji,i11 5 {1 for i g [26, …,

104], min(i, N 2 i)/26 otherwise}. These functions are normalised so
that they have the same maximal values. The time evolution of the
corresponding fidelities is plotted in Fig. 3(b). This figure shows that
all these configurations yield excellent fidelities, the less efficient case
being the triangle, with Fmax < 0.94. It is clear that an analytical
interpolation between any two of these functions will work equally

well, as exemplified in the following. Both the weak coupling limit,
Jw(i), and the PST configurations lead to excellent state transmissions
with Fmax < 1. A possible interpolations between the two limits

is given by Ji,iz1~2 sin hJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i N{ið Þ

p .
NzJw ið Þcos h, with h g [0,

p/2]. A density plot of the corresponding fidelity as a function of time
and of the interpolation parameter h is shown in Fig. 3(c). This
figures shows that, though tMF has a non trivial dependence on h,
the maximal fidelity remains high for all values of h, as expected.

Significantly, these results are almost size-independent. This can
be inferred from Fig. 4 where we plot the maximal fidelity Fmax versus
N, for different coupling configurations (extracted from a time win-
dow [0, 4000]): in all cases Fmax is well beyond 90%.

Fault-tolerant QST against fabrication defects and dynamic noises.
Random defects are unavoidable in the fabrication process.
Therefore, it is crucial to have fault-tolerant mechanism for QSTs
to address these imperfections10. Here we start by considering static
random imperfections of both the tunnelling and the onsite ener-
gies, that are modelled as J 1 grand(i) and Hsite~E

X
irand ið ÞZi,

respectively. Here rand() is a random function uniformly distributed
in [21, 1], g and E are the corresponding amplitudes, and Zi is the
Pauli matrix at position i. Numerically, we find that for g, EvJ=20
there is almost exact state transmission (Fmax . 0.9) for both the
weak coupling and PST configurations, as well as for the interpo-
lations discussed above.

Another important source of disturbance of our QST setup may be
due to random noises from the environment, causing time-depend-
ent fluctuations of the tunnelling coefficients and of the on-site ener-
gies. These effects can be easily included in our numerical scheme, see
Methods. The results are shown in Figs. 5 and 6, where we draw a
density plot of the fidelity as a function of time and of the fluctuation
amplitudes (for the latter we use the same symbols g and E as in the
static case), for N 5 20 and N 5 130 respectively. These figures show
that in the weak coupling limit (panels (a) and (b)), a high-fidelity
QSTs occurs up to g, E<0:05J , and that the noise in the on-site
energies is somehow more effective in ruining QST. Instead, the
PST configuration is much more robust against noise. In addition,
by comparing the two figures, it is evident that the state transmission
with shorter chain N 5 20 is slightly better than that with the long
chain N 5 130 because of longer exposure to noise, in particular for
the PST configuration. The quality of the weak coupling QST are

Figure 3 | (a) Coupling functions Ji,i11. (b) Corresponding fidelities as a

function of time t for different Ji,i11. (c) The contour fidelity as a function

of time t and h when the coupling constants are given by

Ji,iz1~2 sin hJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i N{ið Þ

p .
Nzcos hJw ið Þ, where h is a parameter for the

interpolation.

Figure 4 | Maximal fidelity Fmax as a function of the chain length N, for
different coupling configurations.

www.nature.com/scientificreports
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Figure 5 | Fidelity vs. time t, for time-dependent noise and with N 5 20. (a) Weak coupling limit with couplings perturbed by noise, (b) weak coupling

limit with on-site noise, (c) PST with couplings perturbed by noise, (d) PST with on-site noise.

Figure 6 | The same as of Fig. 5, here for N 5 130.

www.nature.com/scientificreports
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mostly determined by the ratio J0/J and the size effect is rather weak.
Besides, peaks of the fidelity decreases with time as expected.

We remark that the time dependent on-site noises generate a
phase difference between states j0æ and j1æ. The acquired phases
depend on time and on the initial state. Ref. 1 suggests an average
fidelity to consider contributions from different initial states, which
can be maximised by applying a proper magnetic field along z dir-
ection. We calculate the maximal average fidelity over all possible
input states in the presence of on-site noise, shown in Fig. 7. The
overall picture is similar to the cases shown in the previous figures.
We have checked that this would be the case for different noise
realisations (see Methods).

To understand this fault-tolerance behaviour, we can break the
QST into three stages: (1) the sender qubit emits its spin excitation
into the spin chain in a timescale , J{1

0 ; (2) the excitation propagates
in the spin chain towards the receiver qubit with a propagation time

determined by the spin-wave dispersion; (3) the receiver qubit
absorbs the spin excitation. The second stage is affected by the
time-independent random defects and time-dependent noise, but
they both conserve the spin excitation number in the spin chain.
Thus, the spin excitation emitted by the sender can still reach the
receiver side in the presence of defects or noises as long as the dis-
orders are not strong enough to change the spin excitation from
extended modes to localised modes.

An experimental proposal. Let us now consider a specific
experimental implementation by means of single-species ultracold
bosons in a 1D tight-binding optical lattice11 (see also refs. 14, 15 for
related proposals). An optical lattice can be created by using a
retroreflected laser beam of wavelength l, and is described by a
potential V(x) 5 sERsin2(kx), with k 5 2p/l and ER 5 2k2/2m
being the the recoil energy. The bosons are also subjected to a

Figure 7 | Maximal average fidelity vs. time t, for time-dependent on-site noise. (a) Weak coupling; (b) PST for N 5 130.

www.nature.com/scientificreports
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transverse confinement providing the 1D geometry. In the tight-
binding regime this system is described by the following
Bose-Hubbard Hamiltonian

ĤH B~{J
XN{1

i~1

â{i âiz1zh:c:
h i

z
U
2

X
i

n̂i n̂i{1ð Þ, ð2Þ

with a uniform tunnelling rate, J=ER~ 4
� ffiffiffi

p
p� �

s0:75exp {2:07
ffiffi
s
p� �

(see ref. 16). In the hard boson limit, U?J , one can consider states
with at most one boson per site and use the presence/absence of a
boson at a site to encode a quibit. The last term in (2) vanishes. In this
regime the Hamiltonian can be cast in the form of the XY model in
(1)12. Next one may tune the couplings J individually by focusing
additional laser beams perpendicular to the lattice direction in
correspondence of single sites. For sufficiently high intensities it is
possible to create box-like barriers13. While this technique can create
uniform couplings J perfectly, the precise control of individual
couplings, such as lattice ends or sites with a different coupling
constant J0, may be experimentally challenging. The major fault
could happen when one uses the transverse lasers to address
specific sites and locks these lasers in position, which may be
tolerated in our scheme. On the other hand, a more promising
technique is provided by the spatial light modulator (SLM)
technology, that in principle allows to design arbitrary potentials
for ultracold atoms17–19, and could be used to create one of our
coupling configurations: smaller on the ends and bigger in the
middle. This is a technique that is widely used for biological
applications (see e.g.21 and references therein) and that is
becoming to be available in experiments with ultra cold atoms. In
addition, both techniques are subject to noises, e. g., from
background gas, which could be tolerated in our design.

Discussion
We have demonstrated high-fidelity QST in an XY–type model, for a
variety of coupling configurations. Besides the two excellent state
transfer schemes – the PST and the weakly coupling limit – we have
found that most symmetric configurations with larger values of the
couplings Ji,i11 inside the chain, present an almost exact state trans-
missions (Fmax . 0.9). We have found thresholds for enabling high-
fidelity QSTs with manufacturing imperfections and even in noise
channels. We have also proposed a specific experimental imple-
mentation with hard-core boson in 1D optical lattices, designed by
means of the current optical lattice technology or by using spatial
light modulators.

Methods
Time-dependent noise. Two types of time-dependent noise are relevant for optical
lattices: i) fluctuations of the lattice amplitude, affecting both the tunnelling and the
on-site energies; ii) fluctuations of the position of the minima of the lattice. The latter
cannot be accounted for in our approach, as the model is defined on a discrete lattice.
Instead, we can address the effects of the former, by considering random fluctuations
of both the couplings Ji,i11 and the onsite energies. These are modelled as piece-wise
for numerical convenience. Namely, the values of Ji,i11 and of Hsite are considered
constant over a short time interval t (here we choose t 5 0.1J/ ), and varied randomly
between different time steps. From 0 to t, the evolution operator is
U tð Þ~exp {iHtð Þ~W exp {iHdtð ÞW{ . In the following time interval the
Hamiltonian is changed to H9 and the corresponding diagonal
Hamiltonian is H’d , so that the evolution operator up to 2t can be written
U 2tð Þ~W’exp {iH’dtð ÞW’{W exp {iHdtð ÞW{ . Further iterating the same
procedure, one can evaluate U(nt) for an arbitrary time step nt. Then, the density
matrix of the whole system at time t is evaluated by the ensemble average over
different realisations of the noise (here we consider up to thousand noise
realisations)22. Eventually, we use the average density matrix to calculate the fidelity.
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