9,488 research outputs found

    Transport coefficients for the shear dynamo problem at small Reynolds numbers

    Full text link
    We build on the formulation developed in Sridhar & Singh (JFM, 664, 265, 2010), and present a theory of the \emph{shear dynamo problem} for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients, αil\alpha_{il} and ηiml\eta_{iml}, are derived. We prove that, when the velocity field is non helical, the transport coefficient αil\alpha_{il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean--invariant forcing statistics. We consider forcing statistics that is non helical, isotropic and delta-correlated-in-time, and specialize to the case when the mean-field is a function only of the spatial coordinate X3X_3 and time τ\tau\,; this reduction is necessary for comparison with the numerical experiments of Brandenburg, R{\"a}dler, Rheinhardt & K\"apyl\"a (ApJ, 676, 740, 2008). Explicit expressions are derived for all four components of the magnetic diffusivity tensor, ηij(τ)\eta_{ij}(\tau)\,. These are used to prove that the shear-current effect cannot be responsible for dynamo action at small \re and \rem, but for all values of the shear parameter.Comment: 27 pages, 5 figures, Published in Physical Review

    The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams

    Get PDF
    Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections

    Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field

    Get PDF
    We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, α and β effect) in Reynolds-averaged equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and quenches turbulent transport

    Excitation of Na D-line radiation in collisions of sodium atoms with internally excited H2, D2, and N2

    Get PDF
    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2 and D2 was studied in two modulated crossed beam experiments. In both experiments, the vibrational excitation of the molecules was provided by heating the molecular beam source to temperatures in the range of 2000 to 3000 K, which was assumed to give populations according to the Boltzmann expression. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature, with absolute calibration of the photon detector being made using the black body radiation from the heated molecular beam source. Since heating affects both the internal energy and the collisional kinetic energy, the first experiment could not determine the relative contributions of internal energy transfer versus collisional excitation. The second experiment achieved partial separation of internal versus kinetic energy transfer effects by using a velocity-selected molecular beam. Using two simple models for the kinetic energy dependence of the transfer cross section for a given change in vibrational quantum number, the data from both experiments were used to determine parameters in the models

    Transfer of excitation energy from nitrogen molecules to sodium atoms

    Get PDF
    Transfer of excitation energy from nitrogen molecules to sodium atom

    Late growth stages and post-growth diffusion in organic epitaxy: PTCDA on Ag(111)

    Full text link
    The late growth stages and the post-growth diffusion of crystalline organic thin films have been investigated for 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111), a model system in organic epitaxy. In situ x-ray measurements at the anti-Bragg point during the growth show intensity oscillations followed by a time-independent intensity which is independent of the growth temperature. At T > 350 K, the intensity increases after growth up to a temperature-dependent saturation value due to a post-growth diffusion process. The time-independent intensity and the subsequent intensity recovery have been reproduced by models based on the morphology change as a function of the growth temperature. The morphology found after the post-growth diffusion processes has been studied by specular rod measurements.Comment: 9 pages, 8 figures, accepted for publication in Surface Scienc

    On the effects of turbulence on a screw dynamo

    Full text link
    In an experiment in the Institute of Continuous Media Mechanics in Perm (Russia) an non--stationary screw dynamo is intended to be realized with a helical flow of liquid sodium in a torus. The flow is necessarily turbulent, that is, may be considered as a mean flow and a superimposed turbulence. In this paper the induction processes of the turbulence are investigated within the framework of mean--field electrodynamics. They imply of course a part which leads to an enhanced dissipation of the mean magnetic field. As a consequence of the helical mean flow there are also helical structures in the turbulence. They lead to some kind of α\alpha--effect, which might basically support the screw dynamo. The peculiarity of this α\alpha--effect explains measurements made at a smaller version of the device envisaged for the dynamo experiment. The helical structures of the turbulence lead also to other effects, which in combination with a rotational shear are potentially capable of dynamo action. A part of them can basically support the screw dynamo. Under the conditions of the experiment all induction effects of the turbulence prove to be rather weak in comparison to that of the main flow. Numerical solutions of the mean--field induction equation show that all the induction effects of the turbulence together let the screw dynamo threshold slightly, at most by one per cent, rise. The numerical results give also some insights into the action of the individual induction effects of the turbulence.Comment: 15 pages, 7 figures, in GAFD prin

    Generation of coherent magnetic fields in sheared inhomogeneous turbulence: No need for rotation?

    No full text
    Coherent magnetic fields are often believed to be generated by the combination of stretching by differential rotation and turbulent amplification of magnetic field, via the so-called alpha effect. The latter is known to exist in helical turbulence, which is envisioned to arise due to both rotation and convection in solar-type stars. In this contribution, a turbulent flow driven by a nonhelical inhomogeneous forcing and its kinematic dynamo action are studied for a uniform magnetic field in the background of a linear shear flow. By using a quasilinear analysis and a nonperturbative method utilizing a time-dependent wave number, turbulence property and electromotive force are computed for arbitrary shear strength. Due to the large-scale shear flow, the turbulence is highly anisotropic, as a consequence, so is the electromotive force. The latter is found to exist even without rotation due to the combined effect of shear flow and inhomogeneous forcing, containing not only the alpha effect but also magnetic pumping (the gamma effect representing a transport of magnetic flux by turbulence). Specifically, without shear, only the magnetic pumping exists, aligned with the direction of inhomogeneity. For a weak but nonzero shear, the combined effects of shear and inhomogeneous forcing modify the structure of the magnetic pumping when the inhomogeneity is in the plane of the shear flow, the magnetic pumping becoming bidimensional in that plane. It also induces an alpha tensor which has nondiagonal components. When the inhomogeneity is perpendicular to the plane of the shear flow, the alpha effect has three nonzero diagonal components and one off-diagonal component. However, for a sufficiently strong shear, the gamma and alpha effects are suppressed due to shear stabilization which damps turbulence. A simplified dynamo model is then proposed where a large-scale dynamo arises due to the combined effect of shear flow and inhomogeneous forcing. In particular, the growth of a large-scale axisymmetric magnetic field is demonstrated in case of an inhomogeneity which is perpendicular to the plane of the shear flow. Interesting implications of these results for the structure of magnetic fields in star with slow rotation are discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551700

    Stakeholder Perspectives on Opportunities and Challenges in Achieving Sustainable Growth of the Blue Economy in a Changing Climate

    Get PDF
    Coastal marine environments provide livelihoods as billions of people around the world depend greatly on sustainability efforts in the Blue Economy. In this study, we investigated how stakeholders from important Blue Economy sectors along the German North Sea coast perceive the impacts of climate change on their daily work life and the growth of the Blue Economy. In a two-stage approach we first conducted two stakeholder workshops with representatives from the regional sea food sector, science, NGOs and local authorities, in order to identify important issues linked to climate change affecting environment, society, economy and policy. In the second stage, we conducted semi-structured interviews with key knowledge holders from the Blue Economy, to evaluate and validate the most important issues identified during the first stage, and the impacts on the respective sectors. The workshop participants identified perceptible effects of climate change on their marine environment. Early career scientists showed that they possess a clear focus on measures for climate change adaptation, transdisciplinary approaches and knowledge transfer. The interviews revealed that the climate change effects could be perceived as both negative and positive, depending on the sector. Other issues, especially political decisions and developments are perceived to have a greater immediate impact on the Blue Economy than the slow progress of climate change effects. Additionally, increased human activities, in the form of new or intensified uses like marine renewable energy generation, have a greater influence and lead to conflicts between the Blue Economy sectors. Our study showed that economic and societal stakeholders in Germanys North Sea region are aware of climate change and already perceive its effects on their businesses. Synergies and conflicts between the sectors and political decisions might influence sustainable growth of the Blue Economy in highly contested regions, such as the North Sea basin, much stronger than the effects of climate change. This calls for a more flexible and adaptive approach to policymaking, taking into account the changing environmental, social and economic realities

    Nonlinear dynamo action in a precessing cylindrical container

    Get PDF
    It is numerically demonstrated by means of a magnetohydrodynamics (MHD) code that precession can trigger the dynamo effect in a cylindrical container. This result adds credit to the hypothesis that precession can be strong enough to be one of the sources of the dynamo action in some astrophysical bodies.Comment: 5 pages, 5 figures including subfigure
    corecore