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Turbulent transport and dynamo in sheared MHD turbulence

with a non-uniform magnetic field

Nicolas Leprovost and Eun-jin Kim

Department of Applied Mathematics,

University of Sheffield, Sheffield S3 7RH, UK

Abstract

We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity

and magnetic shear (i.e. with both a large-scale shear flow and a non-uniform magnetic field). By

assuming a turbulence driven by an external forcing with both helical and non-helical spectra, we

investigate the combined effect of these two shears on turbulence intensity and turbulent transport

represented by turbulent diffusivities (turbulent viscosity, α and β effect) in Reynolds-averaged

equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by

a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that

the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In

the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect

of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and

transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a

strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and

quenches turbulent transport.

PACS numbers: 47.27.Jv,47.27.T-,47.65.-d
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I. INTRODUCTION

Most geophysical and astrophysical bodies are composed of electrically conducting fluids

(liquid iron for the Earth and plasma for stars, interstellar medium, etc.). The evolution of

magnetic field B and velocity U in these systems are often described by a simplified model

given by the incompressible magnetohydrodynamics (MHD) equations [1]:

∂tU + U · ∇U = −∇P + B · ∇B + ν∆U + f , (1)

∂tB + U · ∇B = B · ∇U + η∆B , (2)

∇ ·U = ∇ · B = 0 , (3)

where B is the Alfvén velocity (B = M/
√
µρ where M is the magnetic field measured in

Tesla; therefore B has the dimension of velocity), p is the total (hydrodynamical + magnetic)

pressure and ν and η are the molecular viscosity and diffusivity, respectively. Eq. (1) is the

Navier-Stokes equation including the Lorentz force which describes the effect of the magnetic

field on the velocity field and an external forcing f , which is assumed to be at small scales.

Eq. (2) describing the evolution of the magnetic field is called the induction equation and

can be derived from Maxwell’s equations and Ohm’s law.

In most astrophysical objects, velocity and magnetic fields are observed to exist on a

broad range of length and time scales. In order to characterize the evolution of fields on

these scales, theories, such as mean-field dynamo [1, 2], decompose the fields into a mean

and fluctuating parts and parameterize the effect of the small-scale (unresolved) fields on the

large scale fields in terms of transport coefficients. Specifically, expressing B = 〈B〉+b and

U = 〈U〉+u, where the 〈•〉 stands for an average on the realization of the small-scale fields,

substituting this decomposition into Eqs. (1-3) and averaging yield the following mean-field

equations:

∂t〈U〉 + 〈U〉 · ∇〈U〉 = −∇〈p〉 + 〈B〉 · ∇〈B〉 + ν∇2〈U〉 − ∇ · S , (4)

∂t〈B〉 + 〈U〉 · ∇〈B〉 = 〈B〉 · ∇ 〈U〉 + η∇2〈B〉 + ∇× E , (5)

∇ · 〈U〉 = ∇ · 〈B〉 = 0 . (6)

The main challenge is to express the stress tensor S = 〈u⊗u〉 − 〈b⊗b〉 in Eq. (4) and the

electromotive force E = 〈u×b〉 in Eq. (5) in terms of the large-scale variables 〈U〉 and 〈B〉.
In the absence of non-diffusive fluxes, the stress can be expressed as Sij = −N T

ijkl∂k〈Ul〉 where
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N T
ijkl is called the turbulent viscosity tensor, which can add to the molecular viscosity in Eq.

(4). On the other hand, the electromotive force is usually assumed to depend linearly on the

mean magnetic field and only the two first term are kept (proportional to the magnetic field

and its first derivative). Following Rädler and Stepanov [3], this expansion can be written

as:

Ei = αij〈Bj〉 + [µ×B]i − βij(∇×〈B〉)j − [δ×(∇×〈B〉)]i − ζijk[∇j〈Bk〉 + ∇k〈Bj〉]/2 . (7)

The first term on the right-hand side (RHS) of Eq. (7) is the α effect which can be shown to

generate magnetic field on large scale for a helical turbulence. It is thus a perfect candidate

to explain magnetic fields in systems influenced by Coriolis force such as in the stellar

convection zones. The second term on the RHS describes a transport of magnetic flux by

turbulence. The third and fourth term in Eq. (7) can be described by introducing an

anisotropic turbulent diffusivity. The last term proportional to κ does not allow a simple

interpretation. The presence of the additional terms besides the α and β effect is possible

only for anisotropic or/and inhomogeneous turbulence.

There has been accumulating evidence that a strong shear reduces turbulent transport via

shear stabilization by flow shear [4]. This is basically because shear advects turbulent eddies

differentially, elongating and distorting their shapes, thereby rapidly generating small scales

which are ultimately disrupted by molecular dissipation on small scales (see Fig. 1). That

is, flow shear facilitates the cascade of various quantities such as energy to small scales (i.e.

direct cascade) in the system, enhancing their dissipation rate. As a result, turbulence level

as well as turbulent transport of these quantities can be significantly reduced compared to

the case without shear. Another important consequence of shearing is to induce anisotropic

transport and turbulent level since flow shear directly influences the component parallel

to itself (i.e. the x component in Fig. 1) via elongation while only indirectly the other

two components (i.e. the y and z components in Fig. 1) through enhanced dissipation

and incompressibility. Indeed, the flow shear has been shown to significantly reduce the

turbulence intensity and the turbulent transport of angular momentum, particle mixing and

magnetic diffusion both in hydrodynamics [5, 6] and magnetohydrodynamics [7]. In [8], by

assuming a uniform large-scale magnetic field, we showed that the α effect is quenched by

flow shear and magnetic field.

In this paper, we first examine the effect of non-uniform magnetic field on the linear
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FIG. 1: Sketch of the effect of shear on a turbulent eddy.

stability of MHD fluids. We then proceed to investigate the effect of a non-uniform magnetic

field on MHD turbulence. A consistent derivation of turbulent magnetic diffusion (β effect)

of non-uniform field in 3D MHD is crucial since there has been controversy over the β

suppression by strong magnetic field [9]. In comparison, in 2D MHD, the β effect was shown

to be severely quenched by magnetic field and also by shear flow [10]. Furthermore, in the

presence of shear flow, another interesting effect of magnetic shear in non-uniform magnetic

field is that the latter can interfere with flow shear and thus weaken the quenching of

turbulence by flow shear, as shown in 3D reduced MHD turbulence [11, 12]. We investigate

if this result holds in 3D MHD by quantifying the effect of magnetic shear on turbulence

intensity and turbulent transport. The reminder of the paper is organized as follows. In

Section II, we present the main governing equations and the quasi-linear approximation that

is used to solve for the turbulent fields. We then present the calculations of the transport

coefficients (turbulent viscosity and α effect) in the limit where the uniform component of

the large-scale magnetic field is negligible in Sec. III and then in the other extreme limit

where it is very strong (compared to shear flow) in Sec. IV. Conclusions are provided in

Sec. V.
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II. MODEL

A. Magnetohydrodynamical equations

We use the similarity of the Navier-Stokes (1) and induction equation (2) and work in

terms of Elsasser variables [13] instead of the (fluctuating) velocity and magnetic fields:

Ψ+ = U + B and Ψ− = U − B. Assuming a unit magnetic Prandtl number (ν = η), the

MHD equations (1-3) can be rewritten as:

∂tΨ
+ + Ψ− · ∇Ψ+ = −∇P + ν∆Ψ+ + f , (8)

∂tΨ
− + Ψ+ · ∇Ψ− = −∇P + ν∆Ψ− + f , (9)

∇ · Ψ+ = ∇ ·Ψ− = 0 . (10)

To study the effect of shear flows and magnetic fields on small-scale turbulence, we prescribe

a large scale flow of the form 〈U〉 = −xAey and a non-uniform large-scale magnetic field

〈B〉 = (B0 − B1x) ey. The chosen configuration (with parallel velocity and magnetic field)

ensures that there is no direct influence of 〈U〉 on 〈B〉. To solve the equations for the Elsasser

variables, ψ+ = Ψ+ − 〈Ψ+〉 = Ψ+ − 〈U + B〉 and ψ− = Ψ− − 〈Ψ−〉 = Ψ+ − 〈U − B〉, we

use the quasi-linear approximation assuming that the interaction between fluctuating fields

is negligible compared to the interaction between large and small-scale fields. The equations

for the fluctuating fields can then be written as:

∂tψ
+ + 〈Ψ−〉 · ∇ψ+ +ψ− · ∇〈Ψ+〉 = −∇p + ν∆ψ+ + f , (11)

∂tψ
− + 〈Ψ+〉 · ∇ψ− +ψ+ · ∇〈Ψ−〉 = −∇p + ν∆ψ− + f , (12)

∇ ·ψ+ = ∇ ·ψ− = 0 , (13)

where p is the fluctuation in the pressure. To solve these equations, we use vanishing initial

conditions: ψ+ = ψ− = 0 at t = t0. An equilibrium is then reached at long times when the

power injected by the forcing balances the dissipation. To solve Eqs. (11-13), we introduce

a time-dependent Fourier transform:

Y (x, t) =
1

(2π)3

∫

d3kei
[

kx(t)x+kyy+kzz
]

Ỹ (k, t) , (14)

where we choose kx(t) = kx(t0) +Aky(t− t0) to account non-perturbatively for the effect of

the non-uniform components of 〈U〉 and 〈B〉. Fourier-transformation of Eqs. (11-13) leads
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to the following equations:

∂tψ̃
±
i ∓ kyB1∂kx

ψ̃±
i − (A± B1) ψ̃

∓
i δi2 = ±iB0kyψ̃

±
i − ikip̃− νk2ψ̃±

i + f̃i , (15)

kxψ̃
±
x + kyψ̃

±
y + kzψ̃

±
z = 0 . (16)

Note that the time-dependence of the wave number cancels exactly the advection by the

mean velocity shear (see Kim [5] for details) and that the second term on the left hand side

of Eq. (15) is obtained by Fourier transform of the advection by the mean magnetic shear

in the following way:

FT (B1x∂yψ
±
i ) =

∫

d3x e−i
[

kx(t)x+kyy+kzz
]

B1x∂yψ
±
i (17)

= ikyB1

∫

d3x i∂kx

(

e−i
[

kx(t)x+kyy+kzz
]

)

ψ±
i

= −kyB1∂kx
ψ̃±

i .

Changing the time variable from t to τ = kx(t)/ky = kx(t0)/ky + A(t − t0), the first two

terms on the left-hand side of Eq. (15) can be grouped together as ∂t = A∂τ and ky∂kx
= ∂τ .

Assuming the forcing to be incompressible, Eqs. (15-16) can be rewritten:

(1 ∓R)∂τ ψ̃
±
i − (1 ±R)ψ̃x

∓
δi2 = ±iγψ̃±

i (18)

− 1

g2 + τ 2











τ

1

b











[

(1 −R)ψ̃+
x + (1 + R)ψ̃−

x

]

− ξ(g2 + τ 2)ψ̃±
i +

1

A f̃i ,

τ ψ̃±
x + ψ̃±

y + bψ̃±
z = 0 . (19)

Here, R = B1/A is the ratio of the magnetic shear to the velocity shear; γ = B0ky/A is the

ratio of the Alfvén frequency to the flow shear; b = kz/ky and g2 = 1 + b2; ξ = νk2
y/A. Note

that Eqs. (18-19) are invariant under the following transformation: γ ↔ −γ, R ↔ −R and

ψ̃+ ↔ ψ̃−. Consequently, ψ̃− can be obtained from ψ̃+ (and vice versus) by changing the

sign of γ and R. Using the following variables:

ψ̃+
x (τ) =

φ+(τ)

(1 −R)(g2 + τ 2)
and ψ̃−

x (τ) =
φ−(τ)

(1 + R)(g2 + τ 2)
, (20)

the x-component of Eq. (18) can be rewritten:

∂τφ
+ =

iγφ+

1 − R
+

τ

g2 + τ 2

[

φ+ − φ−
]

− ξ

1 −R(g2 + τ 2)φ+ +
(g2 + τ 2)

A f̃x . (21)
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The coupled equations for φ+ and φ− in Eq. (21) can be combined to a closed equation for

φ+ :

∂2
τφ

+ +

[

−1

τ
+

2ξ(g2 + τ 2)

1 −R2
− 2iγR

1 −R2

]

∂τφ
+ (22)

+

[

iγ

(g2 + τ 2)

(

γ

(1 −R)τ
− τ

1 + R

)

+
ξ

1 −R

(

τ 2 − g2

τ
+

2Rτ
1 + R

)

+
ξ2(g2 + τ 2)2 + γ2

1 −R2

]

φ+

= τ∂τ

[

(g2 + τ 2)f̃x

Aτ

]

+
iγ + ξ(g2 + τ 2)

1 + R (g2 + τ 2)
f̃x

A .

Two initial conditions are needed in order to solve Eq. (22). At τ = τ0 = kx(t0)/ky, we

assume that initially there is no velocity and magnetic perturbations (φ+(τ = τ0) = φ−(τ =

τ0) = 0). The use of φ±(τ0) = 0 in Eq. (21) gives us [∂τφ
+](τ = τ0) = f̃x(τ = τ0)(g

2 + τ 2
0 )/A

as the second initial condition. As Eq. (22) cannot be solved in general case, we will

consider the two cases of weak and strong magnetic field, given by γ = B0ky/A ≪ 1 and

γ ≫ 1 respectively. Note that the weak magnetic field limit does not restrict the magnitude

of the magnetic shear. The only constraint on the magnetic shear comes from our assumption

that the system is stable (i.e. |R| < 1 as shown in the next subsection).

B. linear Stability

We start by studying the stability of the large scale fields 〈U〉 and 〈B〉 by considering

the behavior of the perturbations of Eq. (22) in the long time limit. As Eq. (22) is a second

order differential equation in τ , the homogeneous equation has two independent solutions

φ1(τ) and φ2(τ). Using WKB theory (see Appendix B for details), we can show that these

two functions have the following asymptotic behavior in the large τ limit:

φ1(τ) ∼ 1

τ 2
exp

[

− ξ

1 + RQ(τ) − iγ

1 + Rτ

]

, (23)

φ2(τ) ∼ τ exp

[

− ξ

1 −RQ(τ) +
iγ

1 −Rτ

]

, (24)

where Q(x) = g2x + x3/3 and the ∼ symbol stands for asymptotic behavior in the large τ

limit. Eqs. (23-24) show that if |R| ≥ 1 one of the solutions of the homogeneous problem

is exponentially divergent for large τ . This is a similar result as that found by [14] who

studied the resistive tearing instability in the context of fusion plasmas. Interestingly, the

tearing instability is stabilized by flow shear if |R| < 1. Note that the limit R → 0 is
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singular as we do not recover the result of [5] with no magnetic shear. This is due to an

additional dissipative layer imposed by the magnetic field. Consequently, the effect of the

magnetic shear, is two-fold. On the one hand, it renormalizes the diffusion rate ξ in the

exponential factor to ξ/(1−R) and ξ/(1 +R) (with a continuous limit to the case R = 0).

On the other hand, magnetic shear changes the scaling with τ in front of the exponential

in a non-continuous fashion (note that the limit ξ = 0 is also singular as this asymptotic

behavior does not recover the result for the ideal system that can be computed exactly). In

the following, we restrict our study to the case where the system is stable (|R| < 1).

C. Transport coefficients

Our main interest is in the total stress and the electromotive force, which determine the

growth/decay of the large-scale velocity field and the large-scale magnetic field, respectively.

The assumption of a large scale flow is in the y direction and depending only on the x

coordinate has two implications for the stress. First, only the components N T
ijxy do not

vanish. Second, only the y-component of Eq. (4) is of interest and the divergence of the

Reynolds stress reduces to ∂xSxy (the two other terms involves derivative with respect to y

and z). Consequently, in the following, we are interested in only one component of the total

stress S defined as:

S ≡ Sxy = 〈uxuy〉 − 〈bxby〉 =
1

2
〈ψ+

x ψ
−
y + ψ−

x ψ
+
y 〉 . (25)

Note that this total stress consists of the difference between the Reynolds stress 〈uxuy〉
and Maxwell stress 〈bxby〉. In the following, we refer to turbulent viscosity νT as the only

component of interest νT = N T
xyxy. For the assumed shear flow 〈U〉 = −Axey, the turbulent

diffusivity can be computed as S = νTA.

Similarly, as we chose the large-scale magnetic field to depend only on x, the only com-

ponents of ∇× E are the one in the y and z direction given by:

Ey = 〈uzbx − uxbz〉 = 〈ψ+
x ψ

−
z − ψ−

x ψ
+
z 〉/2 , (26)

Ez = 〈uxby − uybx〉 = 〈ψ+
y ψ

−
x − ψ−

y ψ
+
x 〉/2 . (27)

For our chosen configuration of the magnetic field which depends only on x, the electromotive

force has only the following terms (see [15] for a general expression of the electromotive force
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for arbitrary shear flows):

Ey = αyyB0 , (28)

Ez = (αzy + µz)B0 + βB1 , (29)

where αyy and αzy are the components of anisotropic (due to shear flow) α effect, µz is the

turbulent transport of magnetic flux and β characterizes the turbulent β effect. Note here

that only these three coefficients are present in our configuration. In particular, phenomena

such as the Ω × J [3] and shear current effects [15], which have been advocated for turbulence

affected by rotation and shear, are absent here. For instance the shear current effect vanishes

because the large-scale vorticity and the curl of the magnetic field are parallel to each other

[15].

D. Forcing

To calculate the correlation functions involved in the transport coefficients [see Eq. (25-

27)], we consider an incompressible forcing which is spatially homogeneous and temporally

stationary with a short correlation time τf . Specifically, in Fourier space, the correlation

function of the forcing is taken as:

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)κij(k2) . (30)

As noted previously, the α effect can be linked to the helicity of the turbulent flow. Conse-

quently, we consider a forcing with both a symmetric part (with energy spectrum E) and a

helical part (with helicity spectrum H) given by:

κlm(k) = E(k)

(

δlm − klkm

k2

)

+ iǫlmpkp
H(k)

k2
. (31)

In the following, the turbulence intensity, turbulent viscosity and α effect are expressed in

terms of the kinetic energy e0 = 〈u2〉 and helicity h0 = 〈u(·∇ × u) of the flow created by

the forcing f in absence of shear and magnetic field:

e0 =
τf

(2π)2

∫ +∞

0

dk
E(k)

ν
, (32)

h0 =
τf

(2π)2

∫ +∞

0

dk
H(k)

ν
. (33)
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The presence of the viscosity ν in the denominator of Eqs. (32-33) is due to the fact that

without dissipation (ν = 0), there is nothing to dissipate the energy injected by the (small-

scale) forcing causing the accumulation of small-scale fields. Therefore, the growth of kinetic

energy or transport is unbounded. In appendix A, we show the derivation of Eq. (32) and

Eq. (33).

III. WEAK MAGNETIC FIELD (γ ≪ 1)

In this section, we investigate the influence of magnetic and flow shear on turbulence

properties in the limit of a very weak magnetic field B0 (i.e. γ ≪ 1). In the following, we

thus keep the magnetic field only to the lowest order to compute the α effect. As it seems

impossible to exactly solve Eq. (22) even for γ = 0, we obtain our results in two different

limits of weak (ξ = νk2
y/A ≫ 1) and strong (ξ ≪ 1) shear in comparison with the diffusion

rate (νk2
y).

A. Weak Flow Shear: ξ ≫ 1

In the case of a shearing rate much weaker than diffusion rate (ξ = νk2
y/A ≫ 1), we can

perform a WKB analysis (very similar to that of appendix B) of Eq. (22) by using ξ ≫ 1 as

a large parameter, obtaining the following two solutions of the homogeneous system (22):

φ1(τ) =
τ

(g2 + τ 2)3/2
exp

[

− ξ

1 + RQ(τ) − iγ

1 + Rτ

]

≡ τ

(g2 + τ 2)3/2
exp

[

E−(τ)
]

, (34)

φ2(τ) =
√

g2 + τ 2 exp

[

− ξ

1 −RQ(τ) +
iγ

1 −Rτ

]

≡
√

g2 + τ 2 exp
[

E+(τ)
]

, (35)

to leading order in ξ−1. Here:

Q(x) = x2/3 + g2x , (36)

E−(x) = −ξ/(1 + R)Q(x) − iγ/(1 + R)x , (37)

E+(x) = −ξ/(1 −R)Q(x) + iγ/(1 −R)x . (38)

Using the method of variations of parameters, the full solution of Eq. (22) with the initial

conditions φ+(τ = τ0) = 0 and [∂τφ
+](τ = τ0) = f̃x(τ = τ0)(g

2 + τ 2
0 )/A is found as:

φ+ ∼
∫ τ

τ0

du
(g2 + u2)f̃x(u)

A

√

g2 + τ 2

√

g2 + u2
exp

[

E+(τ) − E+(u)
]

, (39)

10



where E+ is defined in Eq. (38). The z component of the field can be obtained by integrating

the z component of Eq. (18) with the following result:

ψ̃+
z ∼

∫ τ

τ0

du
f̃z(u)

A(1 −R)
exp

[

E+(τ) − E+(u)
]

−b
∫ τ

τ0

du

√

g2 + u2f̃x(u)

A(1 −R)
exp

[

E+(τ) − E+(u)
]

I+(u, τ) . (40)

Here we defined the integral I+ as follows:

I+(u, τ) =

∫ τ

u

dx

(g2 + x2)3/2

{

1 + exp

[

− 2Rξ

1 −R2
{Q(x) −Q(u)} − 2iγ

1 −R2
(x− u)

]}

. (41)

The y-component can be obtained using the incompressibility condition.

Using Eqs. (39-40), we can compute the turbulent intensity and turbulent transport

coefficients in a similar way as shown in the beginning of Appendix E. The results are as

follows:

〈u2
x〉 =

τf
(2π)3A

∫

d3k
k2

H

k2
y

E(k)Ivx(k) , (42)

〈b2x〉 =
τf

(2π)3A

∫

d3k
k2

H

k2
y

E(k)Ibx(k) , (43)

〈u2
z〉 =

τf
(2π)3A

∫

d3kE(k)Ivz(k) , (44)

〈b2z〉 =
τf

(2π)3A

∫

d3kE(k)Ibz(k) , (45)

S =
τf

(2π)3A

∫

d3k
E(k)

1 −R2
IS(k) , (46)

Ey = − τf
(2π)3A

∫

d3k
ky

k2

H(k)

1 −R2
Iα(k) , (47)

Ez =
τf

(2π)3A

∫

d3k
E(k)

1 −R2
Iβ(k) , (48)

where k2
H = k2

y + k2
z and the various integrals I’s are provided in Eq. (C1-C7) of Appendix

C. In the limit ξ ≫ 1, the approximate value of these integrals in Eqs. (42-48) can be

evaluated and then used for the computation of the turbulent intensity and transport. The

11



results are:

〈u2
x〉 =

τf
(2π)3

∫

d3k
k2

HE(k)

2νk4

1 −R2/2

1 −R2
, (49)

〈b2x〉 =
τf

(2π)3

∫

d3k
k2

HE(k)

2νk4

R2/2

1 −R2
, (50)

〈u2
z〉 =

τf
(2π)3

∫

d3k
(k2

x + k2
y)E(k)

2νk4

1 −R2/2

1 −R2
, (51)

〈b2z〉 =
τf

(2π)3

∫

d3k
(k2

x + k2
y)E(k)

2νk4

R2/2

1 −R2
, (52)

νT = − τf
(2π)3

∫

d3k
E(k)(1 −R2)

4ν2k8
[(k2

x − k2
H)k2 + k2

zk
2
H ] , (53)

αyy = − τf
2(2π)3

∫

d3k
k2

yH(k)

ν2k6
, (54)

β =
τf

(2π)3

∫

d3k
k2

zE(k)(1 −R2)

ν2k6
. (55)

Using the fact that the forcing is isotropic, Eqs. (49-55) can be simplified by integration

over the angular variable θ and φ (after expressing the wave vector in spherical coordinates:

kx = k cos θ, ky = k sin θ cosφ and kz = k sin θ sin φ). Eqs. (49-55) can then be recast as:

〈u2
x〉 =

τf
(2π)2

∫ +∞

0

dk
2E(k)

3ν

1 −R2/2

1 −R2
∼ e0W1(R) , (56)

〈b2x〉 =
τf

(2π)2

∫ +∞

0

dk
2E(k)

3ν

R2/2

1 −R2
∼ e0W2(R) , (57)

〈u2
z〉 =

τf
(2π)2

∫ +∞

0

dk
2E(k)

3ν

1 −R2/2

1 −R2
∼ e0W1(R) , (58)

〈b2z〉 =
τf

(2π)2

∫ +∞

0

dk
2E(k)

3ν

R2/2

1 −R2
∼ e0W2(R) , (59)

νT =
τf

(2π)2

∫ +∞

0

dk
E(k)(1 −R2)

ν2k2

1

30
∼ e0

3νk2
W3(R) , (60)

αyy = − τf
(2π)2

∫ +∞

0

dk
H(k)

3ν2k2
∼ h0

3νk2
, (61)

β =
τf

(2π)2

∫ +∞

0

dk
2E(k)(1 −R2)

3ν2k2
∼ 2e0

3νk2
W3(R) . (62)

In Eqs. (56-62), the functions Wn, which are plotted on Fig. 2, characterize the dependence

of turbulence intensity and transport on the magnetic shear. Figure 2 shows that the

magnetic shear tends to increase the turbulence intensity whereas it decreases the turbulent

dissipation of both momentum and magnetic field (νT and β). Furthermore, the α effect is

not affected by the magnetic shear and is the same as in the kinematic regime. The increase

12
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FIG. 2: Dependence of W1(R), W2(R) and W3(R) on the magnetic shear.

in the turbulence intensity can be understood in terms of instability of the homogeneous

part of Eq. (22). As can be seen in Eqs. (23-24), the system tends to becomes unstable

(the exponential decay being slower) when the magnetic shear is increased. These results

are summarized in Table I.

B. Strong Flow Shear: ξ ≪ 1

The homogeneous part of Eq. (22) has two independent solutions φ1(τ) and φ2(τ).

Guided by the result of section IIB, we rewrite these two solutions as:

φ1(τ) = C1(τ) exp

[

− ξ

1 + RQ(τ) − iγ

1 + Rτ

]

, (63)

φ2(τ) = C2(τ) exp

[

− ξ

1 −RQ(τ) +
iγ

1 −Rτ

]

. (64)

We can determine the asymptotic behavior of the unknown functions: C1(τ) ∼ τ−2 and

C2(τ) ∼ τ and for τ ≫ 1 (see appendix B for details). Using the method of variation of

parameters, the general solution of Eq. (22) is obtained as:

φ+(τ) ∼
∫ τ

τ0

du
(g2 + u2)f̃x(u)

A
[1

u
∂u

(

u

W (u)

{

C2(τ)C1(u)e
E+(τ)+E−(u) − C2(u)C1(τ)e

E+(u)+E−(τ)
}

)

−iγ + ξ(g2 + u2)

1 + R
C2(τ)C1(u)e

E+(τ)+E−(u) − C2(u)C1(τ)e
E+(u)+E−(τ)

W (u)

]

. (65)

13



Here W (t) is the Wronskian of the two solutions of the homogeneous problem; E+ and E−

are defined in Eqs. (37-38). After a long algebra, we can compute all the components of the

fields to leading order in ξ with the following results:

φ+(τ) ∼
∫ τ

τ0

du
(g2 + u2)f̃x(u)

A
[

C3(u)C2(τ)e
E+(τ)−E+(u) + C4(u)C1(τ)e

E−(τ)−E−(u)
]

,(66)

ψ+
z (τ) ∼

∫ τ

τ0

du
f̃z(u)

(1 −R)Ae
E+(τ)−E+(u)

− b

1 −R

∫ τ

τ0

du
(g2 + u2)f̃x(u)

A
[

eE+(τ)−E+(u) + eE−(τ)−E−(u)
]

C5(u, τ) . (67)

Here, note that the analytical form of the functions C3(u), C4(u) and C5(u, τ) are unknown.

However, their asymptotic behavior for large arguments (τ → ∞) can be computed from

those of C1 and C2. In particular, in the large τ limit, the functions C5 is independent of

τ . As shown in appendix E, the asymptotic dependence on τ is sufficient for computing

the scaling of the turbulence intensity with the shear. By using similar techniques as in

appendix E, the magnitude of the turbulent velocity and magnetic field can be found to

leading order in ξ as:

〈u2
x〉 =

τf
(2π)3(1 −R2)2A

∫

d3k
k2k2

HE(k)

k4
y

Jx(k) ∼ e0ξV1(R) , (68)

〈u2
z〉 =

τf
3(2π)3A

∫

d3kE(k)ξ−1/3 [Jz1(k)V2(R) + Jz2(k)V3(R) + Jz3(k)V4(R)] (69)

∼ e0ξ
2/3 [V2(R) + V3(R) + V4(R)] ,

〈b2x〉 =
τfR2

(2π)3(1 −R2)2A

∫

d3k
k2k2

HE(k)

k4
y

Jx(k) ∼ e0ξM1(R) , (70)

〈b2z〉 =
τf

3(2π)3A

∫

d3kE(k)ξ−1/3 [Jz1(k)M2(R) + Jz2(k)M3(R) + Jz3(k)M4(R)] (71)

∼ e0ξ
2/3 [M2(R) + M3(R) + M4(R)] .

14



Here, the J ’s are convergent integrals which are independent of the velocity; V’s and M’s

are defined as:

V1(R) =
1

(1 −R2)2
, (72)

V2(R) =
1

4

[

(1 −R)−5/3 + (1 + R)−5/3 + 2(1 −R2)−2/3
]

, (73)

V3(R) =
1

2

(

V2(R) + (1 −R2)−5/3
)

, (74)

V4(R) =
1

4(1 −R2)2

[

(1 −R)1/3 + (1 + R)1/3 + 2(1 −R2)1/3
]

, (75)

M1(R) =
R2

(1 −R2)2
, (76)

M2(R) =
1

4

[

(1 −R)−5/3 + (1 + R)−5/3 − 2(1 −R2)−2/3
]

, (77)

M3(R) =
1

2

(

M2(R) + R2(1 −R2)−5/3
)

, (78)

M4(R) =
1

4(1 −R2)2

[

(1 −R)1/3 + (1 + R)1/3 − 2(1 −R2)1/3
]

. (79)

Eqs. (68-71) show that both the turbulent intensity and the magnetic field are reduced by

strong flow shear A. Furthermore, the quenching is anisotropic as the components in the

direction of the shear (〈v2
x〉 ∼ 〈b2x〉 ∼ A−1) are much more reduced than the components

in the perpendicular direction (〈v2
z〉 ∼ 〈b2z〉 ∼ A−2/3) as A increases. Figure 3 shows the

dependence on the magnetic shear R of the velocity and magnetic field amplitude: they

are increasing functions of the magnetic shear. This shows that the effect of the shear is

to increase the turbulent intensity. In other words, the magnetic shear acts in the opposite

way to the velocity shear, interfering with flow shear to weaken the quenching of turbulence

by flow shear.

In the limit ξ ≪ 1, the Reynolds stress and the electromotive force can similarly be

computed with the following turbulent transport coefficients:

νT ∼ τf
(2π)3A2

∫

d3kE(k)
Iν(k)

1 −R2

∣

∣

∣

∣

ln

(

ξ

1 −R2

)∣

∣

∣

∣

∼ ξ2e0
(1 −R2)νk2

∣

∣

∣

∣

ln

(

ξ

1 −R2

)∣

∣

∣

∣

, (80)

β ∼ τf
(2π)3A2

∫

d3kE(k)Iβ(k)
1

1 −R2

1

R ln

(

1 + R
1 −R

)

∼ e0ξ
2

(1 −R2)νk2

1

R ln

(

1 + R
1 −R

)

.(81)

Eq. (80) shows that the turbulent viscosity and diffusivity are reduced by a strong shear.

Moreover, the reduction in the turbulent viscosity is weaker by a logarithmic factor than

that in the turbulent diffusivity. Eq. (63) also shows that the effect of the magnetic shear
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FIG. 3: Functions characterizing the dependence on the magnetic shear of the velocity (left) and

magnetic field (right).

is to increase the turbulent viscosity and diffusivity. It thus weakens the quenching effect of

the shear flow. These results are again summarized in Table (I).

IV. STRONG MAGNETIC FIELD

For strong magnetic field (γ = B0ky/A ≫ 1), a WKB analysis of Eq. (22) gives:

ψ̂+
x ∼ 1

A(1 −R)
√

g2 + τ 2

∫ τ

τ0

√

g2 + u2f̃x(u) exp
[

E+(τ) −E+(u)
]

du , (82)

ψ̂+
z ∼ 1

A(1 −R)

∫ τ

τ0

exp
[

E+(τ) − E+(u)
]

f̃z(u)du

− b

A(1 −R)

∫ τ

τ0

exp
[

E+(τ) − E+(u)
]

I(u, τ)
√

g2 + u2 f̃x(u) du , (83)

to leading order in γ−1. Here:

I =

∫ τ

u

du

(g2 + u2)3/2
=

1

g2

{

τ
√

g2 + τ 2
− u
√

g2 + u2

}

, (84)

and E+ and E− are given in Eqs. (37-38).

The solution for the conjugate Elsasser variables, ψ̂−
x and ψ̂−

z , can be obtained by changing

the sign of γ and R in Eqs. (82-83). Using Eqs. (82-83), we can compute the intensity of
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turbulence, with the following result to leading order in γ−1:

〈u2
x〉 = 〈b2x〉 =

τf (1 + R2)

2(1 −R2)2(2π)3A

∫

d3k
k2

HE(k)

k2
y

T (k) ∼ ξ(1 + R2)

(1 −R2)2
e0 , (85)

〈u2
z〉 = 〈b2z〉 =

τf
3(2π)3A

∫

d3kE(k)S0(R)Γ(1/3)

(

3

2ξ

)1/3

∼ ξ2/3S0(R)e0 . (86)

Here, k2
H = k2

y + k2
z and T (k) = π|ky|/2kH − arctan(kx/kH). The fact that the velocity

and magnetic fields are in equipartition is due to a strong magnetic field which drives an

Alfvénic turbulence. Note that the effect of the magnetic shear is included in the term:

S0(R) =
1

4

[

(1 −R)−5/3 + (1 + R)−5/3
]

. (87)

Eqs. (85-86) show that the turbulence is unaffected by B0 while severely quenched by flow

shear. Furthermore, turbulence is less severely reduced in the direction perpendicular to the

shear than in the direction of the shear. In particular, we see that, even in the limit of strong

magnetic field, the turbulence intensity is reduced solely by the flow shear. This is because

the magnetic field forces the turbulence to be more wave-like (due to Alfvén waves), thus

increasing the memory time, without necessarily reducing its amplitude. Note that both

〈u2
x〉 and 〈u2

z〉 increase with the magnetic shear. That is, the effect of the magnetic shear is

again to weaken the quenching of the flow shear.

Similarly, the turbulent viscosity and the α effect are found as:

νT =
τf (1 −R2)

4(2π)3

∫

d3k E(k)
k2

Hk
2
zk

2
y

k4

B2
0

[B2
0k

2
y + νk2]2

, (88)

αyy = − τf
2(2π)3

∫

d3k
k2

yH(k)

k2(B2
0k

2
y + ν2k2)

, (89)

to leading order in γ−1. The α-effect is the same as in the case without magnetic shear

showing that the magnetic shear has no effect on the α-effect. In comparison, the turbulent

viscosity νT is reduced as the magnetic shear increases. Furthermore, we find that the

turbulent diffusivity β vanishes to leading order. Non-trivial diffusivity will be found only

at the higher order in γ−1. This means that magnetic fields hardly diffuse when they are

too strong, which is in agreement with numerical simulations [16].

V. CONCLUSION

To understand the properties of astrophysical and geophysical magnetic fields, we inves-

tigated the turbulent transport of non-uniform magnetic field in the presence of flow shear.
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Weak flow shear ξ = νk2
y/A ≫ 1 Strong flow shear ξ ≪ 1

〈v2
x〉 f+(R) ξf+(R)

〈v2
y〉 ∼ 〈v2

z〉 f+(R) ξ2/3f+(R)

〈b2
x〉 f+(R) ξf+(R)

〈b2
y〉 ∼ 〈b2

z〉 f+(R) ξ2/3f+(R)

νT f−(R) ξ2f+(R)

β f−(R) ξ2f+(R)

TABLE I: Summary of our results obtained in the weak magnetic field limit. f+(R) and f−(R)

represent a function which increases or decreases with magnetic shear R = B1/A, respectively.

The linear analysis reveals that magnetic shear stronger than flow shear leads to instability.

We considered the two limits of strong and weak magnetic field. In the weak magnetic field

limit, the magnitude of the magnetic shear is limited only by the stability condition that

the magnetic shear is to be weaker than the flow shear.

In the case of a weak magnetic field, the flow shear is shown to reduce both the turbulence

intensity and turbulent transport due to shear stabilization in agreement with our previ-

ous results [5, 6]. In particular, turbulent viscosity and magnetic diffusivity (β effect) are

strongly suppressed as A−2 for strong flow shear A. When magnetic shear is incorporated

the turbulence intensity is increased. This is due to the fact that magnetic shear tends to

make the system unstable as shown by our stability analysis. In contrast, the turbulent

transport (both turbulent viscosity and diffusivity) is reduced by magnetic shear if the flow

shear is weaker than diffusion rate while it is increased if the shear is stronger. In all the

cases, we found that, for strong shear, the magnetic shear opposes the effect of flow shear,

thereby compensating the quenching of turbulence by shear stabilization. These results are

summarized in Table I.
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For strong magnetic field, we found that the turbulent intensity is not quenched by strong

magnetic field. In comparison, the turbulent viscosity and α effect are reduced by strong

magnetic field with scalings B−1
∗ and B−2

∗ , respectively. Furthermore, we found that the

turbulent diffusivity of magnetic field (the β effect) vanishes for strong magnetic field to

leading order, indicating that strong magnetic fields hardly diffuse. To recapitulate, the β

effect is quenched by magnetic field for a large constant magnetic field whereas in the weak

magnetic field limit, it can be reduced by strong flow shear.

It will be interesting to extend our theory to incorporate the effects of rotation which

will consistently give rise to α effect and non-diffusive momentum transport (Λ effect) due

to shear-induced anisotropy [17]. How the Λ effect, α effect, turbulent viscosity and particle

transport are affected by rotation, magnetic field and shear would be of great interest with

important practical implications. These issues will be addressed in future publications.
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APPENDIX A: KINETIC ENERGY AND α EFFECT IN THE ABSENCE OF

SHEAR

In the case without large-scale shear flow, the linearized equation for the fluctuating

velocity can be written as:

∂tu(x, t) = −∇p(x, t) + ν∆u(x, t) + f(x, t) . (A1)

In the case where the forcing is incompressible, the pressure vanishes (p = 0) and the solution

of this equation can easily be obtained in Fourier space as:

ũ(k, t) =

∫ t

0

du f̃(k, u) exp[−νk2(t− u)] . (A2)
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Using Eq. (A2), the turbulent intensity can be computed as follows:

〈u2〉 =
1

(2π)6

∫

d3k1d
3k2 e

i(k1+k2)·x

∫ t

0

du1

∫ t

0

du2 e
−ν{k2

1
(t−u1)+k2

2
(t−u2)} 〈f̃(k1, u1) · f̃(k2, u2)〉

=
τf

(2π)3

∫

d3k1

∫ t

0

du1 e
−2νk2

1(t−u1) 2E(k1) (A3)

=
τf

(2π)3

∫

d3k1
E(k1)

νk2
1

(

1 − e−2νk2
1
t
)

∼ τf
(2π)3

∫

d3k1
E(k1)

νk2
1

=
2τf

(2π)2

∫ +∞

0

dk1
E(k1)

ν

The second line in Eq. (A3) is obtained by using the correlation function of the forcing

given by Eq. (30). The fourth line is obtained by taking the long-time limit (t→ ∞) while

the last line is obtained by integrating over the angular variables.

Similarly the kinetic helicity can be obtained as:

〈u · (∇× u)〉 =
1

(2π)6

∫

d3k1d
3k2 e

i(k1+k2)·x

∫ t

0

du1

∫ t

0

du2 e
−ν{k2

1(t−u1)+k2
2(t−u2)} ×

〈ǫlmp (ik2m)f̃l(k1, u1)f̃p(k2, u2)〉 (A4)

=
τf

(2π)3

∫

d3k1

∫ t

0

du1 e
−2νk2

1(t−u1)ǫlmp(−ik1m)κlp(−k1)

=
τf

(2π)3

∫

d3k1

∫ t

0

du1 e
−2νk2

1
(t−u1) 2H(k1)

=
τf

(2π)3

∫

d3k1
H(k1)

νk2
1

(

1 − e−2νk2
1t
)

∼ τf
(2π)3

∫

d3k1
H(k1)

νk2
1

=
2τf

(2π)2

∫ +∞

0

dk1
H(k1)

ν

APPENDIX B: WKB ANALYSIS IN THE LONG TIME LIMIT

To study the behavior of Eq. (22) for large time, we introduce a small parameter ǫ and

write τ = x/ǫ. In terms of the new variable x, the homogeneous part of Eq. (22) can be
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rewritten as:

ǫ2∂2
xφ

+(x) + ǫ

[

− ǫ

x
+

2ξ

1 −R2

(

g2 +
x2

ǫ2

)

− 2iγR
1 −R2

]

∂xφ
+(x)

+







iγǫ2

(g2ǫ2 + x2)

(

γǫ

(1 −R)x
− x

ǫ(1 + R)

)

+
ξ

1 −R

(

x2 − ǫ2g2

ǫx
+

2Rx
ǫ(1 + R)

)

+
ξ2
[

g2 +
(

x
ǫ

)2
]2

+ γ2

1 −R2






φ+(

Using the following WKB ansatz:

φ+(x) = exp

[

1

ǫ3
(S0(x) + ǫS1(x) + . . . )

]

, (B2)

and solving order by order (in ǫ), we can obtain the two solutions of the homogeneous

equation (B1) with the following values of S0, S1, S2 and S3:

Solution 1 Solution 2

S0(x) − ξx3

3(1+R)
− ξx3

3(1−R)

S1(x) 0 0

S2(x) −g2+ig
1+R

x −g2−ig
1−R

x

S3(x) −2 ln x ln x

Plugging this result into Eq. (B2) and changing back to the original variable τ = x/ǫ, we

obtain the two following approximate solutions to the homogeneous equation:

φ1(τ) ∼ 1

τ 2
exp

[

− ξ

1 + RQ(τ) − iγ

1 + Rτ +
1

τ
l1(τ)

]

, (B3)

φ2(τ) ∼ τ exp

[

− ξ

1 −RQ(τ) +
iγ

1 −Rτ +
1

τ
l2(τ)

]

. (B4)

Here, Q(x) = g2x+ x3/3, l1 and l2 are two functions which converge in the large τ limit.
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APPENDIX C: INTEGRALS IN THE WEAK SHEAR LIMIT

In the computation of the turbulent intensity and transport coefficients, we obtained the

following integrals in Eq. (42-48):

Ivx =

∫ +∞

a

dτ

4(g2 + τ 2)

{

e2E+

0
(a,τ)

(1 −R)2
+

eE−

0
(a,τ)

(1 + R)2
+

2e2E0(a,τ)

1 −R2
cos

[

2γ

1 −R2
(τ − a)

]

}

,

Ibx =

∫ +∞

a

dτ

4(g2 + τ 2)

{

e2E+

0
(a,τ)

(1 −R)2
+

eE−

0
(a,τ)

(1 + R)2
− 2e2E0(a,τ)

1 −R2
cos

[

2γ

1 −R2
(τ − a)

]

}

,

Ivz =

∫ +∞

a

dτ
1 + a2

4(g2 + a2)

{

eE−

0
(a,τ)

(1 −R)2
+
e2E+

0
(a,τ)

(1 + R)2
+

2e2E0(a,τ)

1 −R2
cos

[

2γ

1 −R2
(τ − a)

]

}

+
ab2

√

g2 + a2

{

eE+

0
(a,τ)

(1 −R)2
I+
c +

e2E−

0
(a,τ)

(1 + R)2
I−c +

e2E0(a,τ)

1 −R2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ) + I−(a, τ)]
)

}

+
b2g2

g2 + a2

{

eE+

0
(a,τ)

(1 −R)2
|I+

0 (a, τ)|2 +
e2E−

0
(a,τ)

(1 + R)2
|I−0 (a, τ)|2 +

e2E0(a,τ)

1 −R2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ)I−(a, τ)∗

Ibz =

∫ +∞

a

dτ
1 + a2

4(g2 + a2)

{

eE−

0
(a,τ)

(1 −R)2
+
e2E+

0
(a,τ)

(1 + R)2
− 2e2E0(a,τ)

1 −R2
cos

[

2γ

1 −R2
(τ − a)

]

}

+
ab2

√

g2 + a2

{

eE+

0
(a,τ)

(1 −R)2
I+
c +

e2E−

0
(a,τ)

(1 + R)2
I−c − e2E0(a,τ)

1 −R2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ) + I−(a, τ)]
)

}

+
b2g2

g2 + a2

{

eE+

0
(a,τ)

(1 −R)2
|I+

0 (a, τ)|2 +
e2E−

0
(a,τ)

(1 + R)2
|I−0 (a, τ)|2 − e2E0(a,τ)

1 −R2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ)I−(a, τ)∗

IS =

∫ +∞

a

dτ
√

g2 + τ 2
e2E0(a,τ)

{

cos

[

2γ

1 −R2
(τ − a)

]

(

−τ(g
2 + a2)

√

g2 + τ 2
+

ab2
√

g2 + a2

)

+
b2(g2 + a2)

2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ) + I−(a, τ)]
)}

,

Iα =

∫ +∞

a

dτ

√

g2 + a2

√

g2 + τ 2
e2E0(a,τ)ky sin

[

2γ

1 −R2
(τ − a)

]

,

Iβ =

∫ +∞

a

dτ
√

g2 + τ 2
e2E0(a,τ) b

2(g2 + a2)

2
Rl
(

e2iγ(τ−a)/(1−R2)[I+(a, τ) − I−(a, τ)]
)

.
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Here, Rl stands for the real part; I+ is defined in Eq. (41) and I− is obtained from I+ by

changing the signs of R and γ; we defined a = kx/ky and the following functions:

E+
0 (a, τ) = − ξ

1 −R [Q(τ) −Q(a)] , (C8)

E−
0 (a, τ) = − ξ

1 + R [Q(τ) −Q(a)] , (C9)

E0(a, τ) = − ξ

1 −R2
[Q(τ) −Q(a)] , (C10)

I+
0 (a, τ) =

∫ τ

a

dx

(g2 + x2)3/2

{

1 + exp

[

− 2Rξ

1 −R2
{Q(x) −Q(a)}

]}

, (C11)

I+
c (a, τ) =

∫ τ

a

dx

(g2 + x2)3/2

{

1 + exp

[

− 2Rξ

1 −R2
{Q(x) −Q(a)}

]

cos

[

2γ

1 −R2
(x− a)

]}

,(C12)

I+
s (a, τ) =

∫ τ

a

dx

(g2 + x2)3/2

{

1 + exp

[

− 2Rξ

1 −R2
{Q(x) −Q(a)}

]

sin

[

2γ

1 −R2
(x− a)

]}

.(C13)

The integrals I−0 (a, τ), I−c (a, τ) and I−s (a, τ) are obtained by changing the signs of R and γ

in Eqs. (C8-C13) .

APPENDIX D: ASYMPTOTIC EXPANSION

Expanding all the integrals in Eq. (C1) in powers of ξ−1, we obtain the following two

leading orders (by keeping only the terms which are even in all wave-numbers as the terms

with an odd number of wave-numbers would vanish upon angular integration):

Ivx =
1

8ξ(g2 + a2)2

(

1

(1 −R)
+

1

(1 + R)
+ 2

)

=
1

2ξ(g2 + a2)2

1 −R2/2

1 −R2
, (D1)

Ibx =
1

8ξ(g2 + a2)2

(

1

(1 −R)
+

1

(1 + R)
− 2

)

=
1

2ξ(g2 + a2)2

R2/2

1 −R2
, (D2)

Ivz =
1 + a2

8ξ(g2 + a2)2

(

1

(1 −R)
+

1

(1 + R)
+ 2

)

=
1 + a2

2ξ(g2 + a2)2

1 −R2/2

1 −R2
, (D3)

Ibz =
1 + a2

8ξ(g2 + a2)2

(

1

(1 −R)
+

1

(1 + R)
− 2

)

=
1 + a2

2ξ(g2 + a2)2

R2/2

1 −R2
, (D4)

IS =
a2(g2 + a2) − g2

4ξ2(g2 + a2)4
(1 −R2)2 , (D5)

Iα =
γ(1 −R2)

2ξ2(g2 + a2)2
, (D6)

Iβ =
b2R

ξ2(g2 + a2)3
(1 −R2)2 . (D7)
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APPENDIX E: INTEGRALS IN THE STRONG FLOW SHEAR LIMIT

As an example of how to compute the correlation functions, we show the main steps to

obtain 〈X2〉. The Fourier transform X̃ of X is given by:

X̃ =

∫ τ

τ0

du G(u)F (τ) exp [−ξ {Q(τ) −Q(u)}] fi(u) , (E1)

where Q is defined in Eq. (36). The correlation of the variable X can then be computed as

[see 5, for details]:

〈X2〉 =
τf

(2π)3A

∫

d3k Kii(k)G(a)2

∫ +∞

a

F 2(τ) exp [−ξ {Q(τ) −Q(a)}] dτ (E2)

where a = kx/ky.

For the computation of the correlation in the strong shear limit (ξ ≪ 1), we have to

compute τ -integrals of the form:

K =

∫ +∞

a

F 2(τ) exp [−ξ {Q(τ) −Q(a)}] dτ . (E3)

Here F 2 has the scaling F 2(τ) ∼ τ θ in the large τ limit. When θ < −1, K exists for ξ = 0

thus, the ξ ≪ 1 limit can be easily obtained by putting ξ = 0 in Eq. (E3). This is however

not the case when θ > −1 as the integral diverges as ξ → 0. In that case, by making the

substitution y = 2ξτ 3/3, the integral (E3) can be computed in the ξ ≪ 1 limit as:

K =

∫ +∞

2ξa3/3

F 2

[

(

3y

2ξ

)1/3
]

exp

[

−y +

(

3yξ2

2

)1/3
]

(

3y

2ξ

)−2/3
dy

2ξ
(E4)

∼
∫ +∞

0

exp[−y]
(

3y

2ξ

)(θ−2)/3
dy

2ξ

∼ 1

3

(

3

2ξ

)(θ+1)/3 ∫ +∞

0

exp[−y]y(θ−2)/3dy

∼ 1

3

(

3

2ξ

)(θ+1)/3

Γ

(

θ + 1

3

)

,

where Γ is the Gamma function. In summary, if the integrand has a scaling τ θ (excluding

the exponential factor) in the large τ limit, the correlation function scales as ξ−(θ+1)/3 in

the strong shear limit (ξ ≪ 1). For instance, Eq. (67) shows that in the large τ limit, the

integrand does not depend on τ (θ = 0). Therefore, for the computation of 〈u2
z〉, the τ
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integral has the scaling ξ−1/3 with the shear.
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