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The Atom-Molecule Reaction D * H_ •*• HD + H
«

Studied by Molecular Beams

Jo Geddes B Ho Fo Krause 9 and W« L» Fits
Department of Physics
University of Pittsburgh
Pittsburgh, Pennsylvania 15S13

Collisions between deuterium atom and hydrogen molecules

have been studied in a modulated crossed beam experiment., The relative

signftl intensity and the signal phase for product HD from reactive

collisions allowed determination of both the angular distribution and

HD mean velocity &s a function of angle* From these a relative differ-

ential reactive scattering cross section in centef-of-mass coordinates

was deducedo The experiment indicates that reactively formed HD having

little or no internal excitation departs from the collision anistropi-

cally» with maximum amplitude 180° from the direction of the incident

D beam is C-of-M coordinates, which shows that the D~H-H reacting config-

uration is short-lived compared to its rotation time» Non-reactive

scattering of D by H2 was used to assign absolute values to the differen-

tial reactive scattering cross sections.
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lo INTRODUCTION

The pioneering work of Taylor and Data in 1955 on the reaction

K + HBr •* KBr * B demonstrated that crossed beam techniques could be
' V'i i

applied successfully to the study of thermal energy chemical reactions.

It was immediately clear that vith this experimental method the means of

investigating the dynamics of bimolecular chemical reactions were within

reach, ftt least for the alkali species and their salts, where use could be

made of surface ionization detectors with high efficiency and specificity.

2Very quickly other laboratories took up the challenge of thermal energy

reactive scattering experiments and with improved techniques began to

isolate the experimental parameters of interest» Consequently, for

thermal energy reactions involving alkali species much detailed Information

is available about both the angular and velocity distribution of the

products, the lifetime of the intermediate collision complex, the

activation energy, the variation of reaction cross section with energy

and the internal energy states of the products,, All this accumulated

data leads to an understanding of the ionic bonding mechanism, this

being dominant in alkali salts»

For non-alkali speciess where the bonding is covalent, until re-

cently a very limited amount of success had been achieved in thermal energy

neutral-neutral reactive scattering experiments ° Here a detector that is

"universal" in nature is required* Such a detector has been in use widely

in beam experiments and it employs electron impact ionization followed by

mass analysis. The inherent disadvantages of this detection system are

both the low efficiency and the inability to distinguish between reactively

scattered beam molecules and background gas molecules of the same species.



The early partly successful experiments using universal

3 kdetectors vere on the reaction D + H2 and H •*• D „ The small rate

constant and the high background pressure of the interfering species,

together with the detector's limitations, made meaningful experimentation

extremely difficult Improvement of the design of universal detectors

and the use of elaborate differential pumping around the ionizer has led

to reduction of the interfering backgrounds and recently several labora-

tories have reported on investigations of reactions of the type D + Br?

and Cl + Br2«

One reactive scattering system, that of hydrogen atoms by hydrogen

molecules H •*• H2 •*• H2 •*• H or its isotopic variants, is of fundamental

importance from % chemical kinetics viewpoint. The elementary character of

this bimolecular reaction makes it an excellent testing ground for theories

of chemical reaction» It has been the object of many theoretical inves-

tigations, the most recent and comprehensive of which have been by

6 7
Karplus and co-workers, and by Mieha,,

Experimental progress in investigating this reaction has been

slow. The bulk reaction rate constant was measured as a function of

temperature as early as 1930 for para- to ortho-hydrogen conversion due to

8
atomic hydrogen« In the last decade the other hydrogen isotopic reactions

Q

have been investigated by several workers using various techniques to

determine the reaction rate in the temperature range 250 K to 750 K»

These experiments have provided much needed bulk information about this

reactiono However, at best, given a particular set of reaction model

assumptions, the data can determine only rigorous bounds on integrated

properties of the cross sectiono



The preliminary crossed beam scattering experiments on the

3 khydrogen exchange reaction ' had been unable to make use of the full

potential of this poverful technique. The present paper describes the

progress made recently towards further understanding the reaction

D + H •*• HD * Ho To this end measurements have been made of the HD

differential scattering cross section, the velocity of the products and,

for calibration purposes, the differential scattering cross section for

non-reactive scattering of D on H_«,

IIo KINEMATICS

In crossed beam experiments it is of value to construct a velocity

vector diagram of in-plane scatteringo Figure 1 shows such a diagram

of the D + H2 reaction at threshold energy with the molecular beam cooled,

as was the case in these experiments, to ensure that only low lying

rotational states participate in a collision.,

The velocity of the H molecule OK is the mean velocity of a Hp

beam cooled to 77°Ko The D atom velocity OB is that which makes the

relative kinetic energy correspond to the•activation energy 0»33 eV,

OC represents the eenter-of-mass velocity» Applying conservation of

momentum to the reaction and assuming the initial H and product HD have

no internal energy, the circle designated HDR is found to be the locus

of velocities of HD product in the eenter-of-mass coordinates. The ratio

of the radius of this circle to the D atom speed in eenter-of-mass coor-

dinates is [— (l - -r-)] where AE is the endothermicity and E the rela-
3 &

tive kinetic energyo The tangents drawn from the origin to this circle

OH and OH" represent the angular limits between which reactive HD signals



will be observed, approximately from a laboratory angle of ̂ 1% to

-283$°o (The positive sign is used to denote deflection from the D

direction towards the H_ cross beam directiono) Within these limits at

a laboratory angle @ the HD product has two separate velocity components,

OD and OM corresponding to backward and forward scattering in the center-

of-mas3 systemo

Recognition must be taken at this point of the almost certain

3 Upresence of HD molecules in the D atom beam s due to the difficulty of

separating the impurity HD from the D? feeder gas° The velocity vector

diagram for HD elastic scattering from H 'is also shown in Fig° 1° OA

represents the mean velocity of HD from a furnace running at a typical
'*. •

temperature for D beam production (2800°KJo The circle HD is the locus
' • . . . . SG

Of scattered HD . Velocities in the senter-of-mass systemic, In this idealized

case scattering is between laboratory angles approximately *50 to -36 „

This is approximately the same angular range as for reactive
».; .

scatteringo At eash laboratory angle there can be reactive and non-reactive

contributions from forward and backward scattering in the center-of-mass

coordinateso With these similarities in angular distribution it is impor-

tant to distinguish experimentally between reactive collisions and

scattering of impurity HD.

III» APPARATUS

Ac General Description

The apparatus used in thia experiment is illustrated diagramma-

tically in Fig, 2° The A®«terium atom beam source was a tungsten furnace

operating at up to 3000°K in the first of three differentially-pumped



chamberso In the second chamber th« beam was modulated by a rotating

toothed chopper wheelo After entering the third chamber, this beam passed

through a liquid helium eryopumped fourth chamber 8 within which the dc

H2 beam Crossed the modulated D beam. HD formed by reaction emerged from

the fourth chamber and wets collimated into a beam for detection. The

d$$$@tor was a high efficiency ionizer (10 mA/Torr)s which responded to

number density of molecules in the beam£ followed by an Extranuelear

Laboratories quadrupole mass filter and particle multiplier„ The ionizer

was enclosed in a titanium-getter-pumped fifth chamber to reduce the

partial pressure of background gas which is a severe source of shot

noise. All of this assembly rotated about the beam intersection point

in the plane of the two crossed beams within *J?0 of the D beam axis.

Neither beam was velocity selected and the effective kinetic temperature

of the reactants in the eenter-of-mass coordinates was in a very narrow

range just below 1500 Ko Lock-in circuitry was used and the modulation

frequency ranged from ikkQ through 9̂ 00 Hz.

Bo Performance

1, Atomic Beam

Since the atomic beam intensity from a low pressure thermal

dissociation furnace is very limited, the source-to-interaction-region

distance was made as small as practicable, 8 cm, in order to achieve high

atom densityo Besides this limitation on Intensity"the deuterium atom

beam presented several major difficulties,.

First, the molecular deuterium from which the D atoms were pro-

duced contained a 0»3# HD impurity. Although dissociation ran around 95$



the undissociated HD impurity could9 on non-reactive scattering from the H_

targets, give a nodulated HD signal comparable with that expected from

HD formation in the reaction.

A second problem caused by the D beam arose with its termination

in the third chamber. Residual gas analysis of the associated pressure
=7

increase of 3 x 10 Torr indicated that a large fraction of it is due to

HD molecules. Presumably, at walls of the third chamber, the D atoms

undergo surface reactions in which hydrogen is abstracted from adsorbed

gases» This background introduced gsv©2?e shot noise in the detector when

modulated HD was being observed,

2o Molecular Beam and Fourth Chamber

The Hp beam was contained within the double walled fourth

chamber which was suspended from the lid of the third chambero The

multichannel nozzle through which the Hg issued was attached thermally to

the liquid nitrogen cooled outer shroud of the fourth chamber so that the

temperature of the H2 beam was approximately 77°K, Additional collimation

Of the beam was found to be necessary and was provided by an aperture in

the liquid helium cooled plate shown in Figo 2, The very dense Hg beam

after traversing the interaction region was removed through condensation

on the opposite liquid helium cooled surface. To avoid problems with the

formation of "hydrogen ice" and the subsequent reduction in sticking

probability for H-, a trap was constructed to increase the effective surface

area of the collection region. With this arrangement Hp beams, which gave

up to 10% attenuation of the D atom beams, could be used for up to six
—7hours with a pressure rise of no more than 5 x 10 ' Torr in the third chambero



3

The fourth chamber and its liquid nitrogen-cooled shroud,

also had apertures, through which the D beam entered normal to the H_

beam direction, and large in-plane slots for observation of scattering.,

For the reactive scattering measurements both beams vere 6 mm in diameter

at the interaction region and the detector could observe scattering events

at angle differing from the.detector axis (which passed through the

target center) by as much as 3 . This angle was 1° for the non-reactive

scattering results, where collimation was tightened.

Because the molecular beam source operated at low temperature

and at high pressure (̂  1 Torr), the possibility that some clustering to

form molecular polymers, (Hg) might be occurring in the expansion into

the vacuum required consideration. In a separate experiment using modu-

lated beam mass spectrometry, dissociative ionization products from pro-

cesses such as e «• (Hg)2 •* H3* •«• H * .2e or «--+ Cî )- •*• H * -IK H * 2e were

seen only to be that for normally occurring HD in Hp. We regard the

experiment as indication that the cross beam was effectively free of H

clusters; otherwise, the mass 3 signals would have been greater and

mass 5 signals would have been observable.,

3« Detector

Either reaction product, H or HD, could in principle be detected.

Experimentally it was found that the dc background of H signal was

very much greater than the mass 3 amu signal and consequently the major

effort was directed at observing product HD molecules. A significant

reduction in the shot noise at mass 3 was achieved by reducing the back-

ground pressure in the ionizer. The complete ionizer and quadrupole rods



vere enclosed in a liquid nitrogen cooled titanium sublimation pump

(200 liters/sec for Ĥ ) with only a small aperture into the third chamber

through which the beam could be sampled. The background partial pressures

of HD and H2 vere reduced to about two orders of magnitude by this

=9arrangement, that of HD to better than 10 Torr and H. to better than

—8
10** Torr. Under these conditions with an integrating time of 100

seconds the HD signal-to-noise ratio was at best 10 to 1. Reduction in

the H» background improved the signal-to-noise ratio when scattered D

atoms were being detected.

Extreme care had to be taken at all angles to ensure that all

modulated D atoms scattered on the Hp beam passed cleanly through the

detection system. Otherwise chemical reaction of the D atoms on surfaces

close to the ionizer could give rise to reflected modulated HD molecules

which would be detected as a phase-sensitive signal indistinguishable from

reactive scattering.

IVo THE TECHNIQUE FOR MEASURING THE HD PRODUCT VELOCITY

Besides measuring the amplitude of the ac signal the lock-in

amplifier was usetf to measure the" signal phase* The phase at which

the signal appears with respect to the reference signal allows the speed

Of the neutral particles to be determined from the chopping frequency f and

12the distance, L, travelled from the modulator to the ionizer. For a

monoenergetic beam velocity u the phase shift * is given by

* = 2irfL/u (1)

In the case of square wave modulated Maxwellian beams the phase



10

shifts as well as the amplitude reductions due to smearing as the faster

particles at one beam pulse overtake the slower particles of the preceding

pulse have been evaluated.

When determining the meaa velocity of reactively scattered HD,

it is necessary to take into aceount contributions to the recorded phase

shift allowing for the D atom travailing from the chopper to the inter-

action region (k,Q cm) and the HD from the interaction region to the

&@|<?ctor (11=5 cm)o When the D atom signal in the primary beam is used

as a reference, the difference in flight times of D £ffl& HP through the

mass filter must also be taken into account0

The HD signal itself would be the superposition of four signals

each with a different phase eozresponding to the different velocities 6f

the forward and backward scattering components of both elastically

scattered HD and reaction product HD, The tuned narrow-band lock-in

amplifier responds to the fundamental Fourier component of the modulated

signal. Hence the HD signal would be

n %•( 2lfft — $)«,*. A^. 8V (r>\c e » £ A e • • * (2)

where A is the amplitude of the n-th Velocity component and T repre-
u ' EX

sent s the flight time from the chopper to the detect or „. .Upon algebraic

elimination of the amplitude, C, one can write

£ A ein 2irf-sn n

A cos 2irft

(3)

In ttee particular case of one of the A °s being very much larger

than the other @9 the phase change * will be proportional to the chopping



frequency f. Linearity of the phase angle with frequency is therefore

a test for the predominance of one component. Deviations from linearity

indicate the extent to which other velocity components contribute to the

signal.

V. MEASUREMENTS

A. Angular Distribution of Reagtively Scattered HD

Figure 3 shows the angular distribution in laboratory coordinates

of the detected HD reaction product. The error bars represent 90# confi-

dence limits for six experiments on the relative signal as a function of

laboratory angle» The absolute differential cross section units on the

ordinate were assigned by methods discussed in Section VI° C. below.

The D beam temperature was 2850 K and the modulation frequency

1400 Hz. Signals are not shown at angles less than 15° from the primary

beam, where the scattered HD impurity in the D beam becomes significant.

Four tests were applied to distinguish HD reaction product and

non-reaetively scattered impurity HD. First, the change of HD signal as

the furnace temperature was changed was noted; an increase with increasing

temperature indicated D atoms reacting, while a decrease indicated scatter-

ing of impurity HD, which becomes increasingly dissociated. Data are

reported only for those angular ranges where the signals increased with

increasing furnace temperature.

Second, the angular distribution of D atoms and D molecules which

could only have been non-reactively scattered were compared with observed

HD. The observation that the HD angular distribution was markedly different

from the distributions of the D and D indicated that the HD was not
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produced by non-reactive scattering or by HD formed in surface reactions

on detector eollimating slits by scattered D atoms„

Third, from consideration of the kinematics, including the cen-

troid distribution, the angular range over which the HD was detected was

+48 to -35 » which is consistent with reactive scattering but too

narrow for elastic scattering.

The fourth test is the most significant one. It involved

measuring the mean HD product velocity and considering the kinetics of

the reaction.

B. Mean Velocity of Scattered HD

The mean velocities of the HD molecules have been calculated

from the phase shifts recorded experimentally„ These have been plotted

on a velocity vector diagram in Fig. 4. The modulation frequency (7200 Hz)

used for the measurements in this figure was a compromise between the high

frequency requirement for large, readily measurable phase shifts and the

low frequency requirement for minimum loss in signal amplitude due to

spreading and smearing of the pulses in the modulated beam. The observed

phase shiftss for convenience, were measured with respect to the direct

D atom beam signal, and ran from about 50 at small angles down to 10

at the largest laboratory angle.

The dependence of the HD phase angle on frequency was investigated

from 1440 Hz to 9400 Hz and was found to be linear at all angles greater

than 15 degrees. The scatter of points plus the statistical uncertainty

in the measurements, would admit no more than a 10$ contribution from

velocity components other than a main one.



13

Co Angular Distribution of Scattered D Atoms

Figure 5 sbovs the recorded laboratory angular distribution

of scattered mass 2 particles over the angular range k to U5 » measured

from the direction of the D atom beam. Since D and H? are indistinguish-

able in the detector system, the mass 2 signal represents the sum of D

scattered by H2 and H_ scattered by Do The ordinate of Fig. 5 is given

in absolute cross section units assigned as discussed in Section VI . Co

below .

It is straightforward to show that if (l) two colliding particles

have the same mass, (2) the collision is elastic, and (3) a number density

detector is used, then the laboratory angular distribution of each of the

colliding species should be symmetrical about the direction of its beam,

On the assumption that the scattering cross section consists of an

isotropic "hard-sphere" component and a large forward scattered component,

it would be expected that the data shown in Fig» 5 would be symmetric

about the D beam direction. The observation that deviations from symmetry

did not exceed 10$ over the specified angular range, indicates that the

apparatus was satisfactorily free of misalignments and asymmetries »

VI. ANALYSIS AND DISCUSSION OF RESULTS

A. HD Product Average Velocity

When two beams with number densities n1 and n? intersect at right

angles in a volume V, the total number of reactive collisions per second,

N, is given by
» ir/2

N - n^V f f v0(v)l(v,*)dvd'?

0 0

where v is the relative velocity, o(v) is the total cross section for



reaction, I(v,Y) is the normalized distribution of the relative velocity

vectors and coordinate ¥ is the inclination of the relative velocity vector

to the n. beam.

From Eg.. 'CO the most probable relative vector velocity for

reaction can be found if the dependence of the total cross section on

relative velocity is known.

A cross section with simple functional form is now considered.

It is assumed that the excitation function is independent of orientation

and has a velocity dependence given by '

"0 when v < vfi

v2 / (5)

_o(l - —^- ) when v > vn
v2 ~ °

where v is the relative velocity corresponding to the activation energy

and a is a eeustant. This simple choice introduces no large bias except

where noted elsewhere. This o(v) does not differ greatly from that found

in the H +. H_ semi-classical study by Karplus, 'Porter and Sharma .

For an activation energy of 0.33 eV, the most probable relative velocity

vector has coordinates (9.8 x 105 cm/sec, $ = It(,5°)°

IB Fig. it, the experimental velocities are showa On a velocity

vector diagram constructed using these average values and permitting no

change in internal energy. The HD velocities recorded experimentally

have been shown to represent just one of the four possible scattering

components and as such should fit onto at least part of an appropriate

velocity vector diagram. The data fit this diagram and hftve been shown

V •' : • ' ' ' • ' ' '' '' 12to be incompatible with elastically scattered HD impurity. These data

and the angular distribution width in the laboratory system are also
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incompatible when endothermicities of reaction are assumed larger than

.05 eV (corresponding to changes of rotational energy quantum number

of about AJ =3). Hence the HD signal is again confirmed as a reaction

product and further it is principally back-scattered in the center-of-

mass system. The type of analysis carried out above does not predict

the dependence of cross section on velocity but only tests a given modelo

Bo Center-of-Mass Angular Distribution

Of major interest is the determination of the differential reac-

tive scattering cross section in center-of-mass coordinates. This can be

related to signals observed in a crossed-beam experiment by a formalism that

is veil known. ' For a detector with solid angle ft that uses electron

impact ionization (and therefore detects number density), the signal

observed in the plane of intersection of the two beams at a laboratory

angle, 3 (measured from the direction of the atomic beam) is

ir/2

8(0) = Kn̂ V f '

y&Q y=o ft

(6)

where

I cos 5|

and
o o o
u «• w - v A

cos £ = o — j2uw

where K is a constant containing fixed apparatus parameters, and u and v

are the velocities of the detected product (HD in this case) measured in

laboratory and center-of-mass coordinates respectively. The effective
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or average differential cross section in the center-of-mass coordinates,

-rr- is dependent on y and contains the relative probability of a product

moving in a given direction after collision. Q. is the electron impact

ionization cross section of the detected product and the u in the denom-

inator reflects the fact that sensitivity of detection decreases with

velocity in laboratory coordinates. The remaining term in the solid

angle integral, J, is the usual Jacobian which describes the way infinites

imal solid angles transform between the center-of-mass and laboratory coor

dinates systems for each point on the center-of-mass scattering circle of

a monoenergetic velocity diagram. It is noteworthy that the form of Eq.

(6) is appropriate to the assumptions that angular dispersion of the per-

pendicular beams has been neglected.

For simplicity of analysis it is also assumed that the effective

differential cross section is separable in its variables and that

(7)

where f(0) is the normalized angular distribution in center-of-mass

coordinates. Since o(v) expressed in Eq. (5) weighted with the kinetic

energy distribution of reactants implies an average reaction energy in this

experiment of .1*8 eV and since this kinetic distribution has a width of

.1 eV (FWHM), Eq. (7) assumes that f(0) does not vary appreciable with v

throughout this range.

The experimental results on the mean velocity of product HD (see

Fig. h) suggest that in this experiment* the reaction proceeds with

effectively zero endothermicity, AE. If zero endothermicity is assumed,
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and Eq. (7) is inserted into Eq. (6), it can be shown that the solid

aagle integral in Eq. (6) is independent of v except for the factorable

term v o(v). This integral yith Q.v o(v) removed and represented as

), is determined once f(0) and ¥ are specified. Equation (6)

can then be written as

KQ n nV E a(l,)A(B,») (8)
1 x " all ¥ • •

a^)* f f o(v)l(v,*)dvd'F,
•"• J AW J

where

*. - — V=0

A? being the grid size chosen for numerical integration, and

> » ^'
1 U/ \ *A»»-p o
* % S • / AJ

The signals as a function of B have been evaluated numerically

using trial forms of f(0) in Eq. (8) with A* = .5°. While the trial forms

of f(0) are arbitrary, the best fits of the experimental data were obtained

using

f(0) « cosN(M(l80° - 0)), |M(180° - 0)| < 90° (9)

=0 , otherwise.

Figure 6 shows a comparison of the experimental results with

those computed using Eqs. (5), (8), and (9). The noteworthy features

of this integral are its invariance with respect to change in M in the

laboratory region +5° to +25° and its sensitivity over the other regions.

The insensitive region is due to the function f(0) remaining relatively



18

unchanged over the center-of-mass region 170° to 190° with respect

to changes in M. Furthermore, the large error bars in this region make

it difficult to assign a unique form of f(9).

In Figo 7 the most probable experimental differential cross

section, cos (1.35(180° - 9)) has been compared (after normalization at

180°) with that derived theoretically by Micha for D + H.(J = l) reactive

scattering at an energy consistent with this experiment. Agreement is

very good from 9 = 180° to l40°. However, beyond this region, where

the experimental distribution is extremely sensitive to the form of the

scattering cross section, agreement is poor. This result is little

changed with the inclusion of Micha's J = 0 and J = 2 Hp state solutions

weighted to their estimated experimental abundance.

Calculations by Karplus and Tang on the isotopic reaction H + li-

ar e in broad agreement with the general features of the above results,

namely, a strong backward peaking in the center-of-mass angular distribution

and a sharp fall off with angle in the experimental energy range.,

Figure 8 shows a comparison of the present results with those of
3

Data and Taylor., The apparent laboratory symmetry of the Data and

o
Taylor results about 5 is difficult to understand when the asymmetric

nature of the center-of-mass to laboratory transformation is considered.

However, it is believed that the detector collimation of Data and Taylor

did not permit the detector to view the entire interaction volume when

17the detector was moved out of the D beam.

- C. Calibration of Scattering Cross Sections

For absolute calibration of the reactive cross section, rather

than attempt to determine accurately the beam densities and the geometric
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factors which are contained in the constant K of Eq.. (6), the following

procedure was used*

Both the reactive HD and non-reactive scattered D were monitored

under identical experimental conditions » If the absolute non-reactive

differential scattering cross section is known, then the ratio of signals,

after correction for ionization cross section and velocity difference,

determines the absolute reactive differential cross section, since the

beam densities and apparatus parameters remain unchanged .

The first step is to consider the non-reactive scattering. There

— 16 2
is a published absolute value of 55 x 10~ cm for the total scattering

18cross section, o , for H by H2 at mean velocities comparable to those

of the present experiment. In the present experiments, there is the compli-

cation that D scattered by H and H_ scattered by D are indistinguishable in

the mass spectrometric detector. In order to obtain absolute differ-

ential non-reactive scattering cross sections for calibration in the

present experiments the following procedure was used.

It is assumed that the absolute differential scattering cross

section can be represented by do /dft = a h(0), where h(0) is the normal-

ized angular distribution function in center-of-mass coordinates o Appli-

cation of Eq.o (6) gives for the non-reactive scattering signal at the

laboratory angle, 6, (3=0/2)

8(6) = ItKhVaea hO) «• h(l80° -

(10)

where K is the apparatus constant of Eq. (6), Q_. and Qu are the known
.. • T> H2

ionization cross sections f or D and H respectively. Knowledge of h(0) is
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all that is required to determine Kn.ngV. (The response of the electron

multiplier in the detector to D and H_ is assumed identical. )

The observed scattering signals (Fig. 5) makes it appear that

for 20° < 6 < ̂ 5° C*0° < 8 < 90°), h(0) is constant which suggest that

the scattering consists of a forvardly scattered peak plus an isotropic

hard-sphere scattering component. It is assumed that this is the case,

which is in accord with quantum mechanical studies of this and similar

systems , and that h(6) retains the same constant value at angles

0 > 90°. .

Subtraction of the assumed hard-sphere component indicates (see

Fig. 5) that in the forward direction the cross section has the angular
_"7 /o

dependence h ( 9 ) « 6 . It is known from theory that for small-angle

Sdeflections in a central force potential of the form V « -C/r the

differential cross section is of the form

dO (0)

(11),

The observed angular dependence is that expected for S - 6? and identifies

the scattering as being caused by a van der Waals force*

At very small angles (dependent on energy), quantum effects take

over and the differential scattering cross section loses its 7/3 power

dependence and becomes constant. The mean value of this cross-over angle

has been estimated as 9 _ * 2.5 «i/

It was thus assumed that h(e) had the form

e > ec
(12)

h(e) = a(i + b e"7/3) 180° > e
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This form was inserts*, into fiq. (10) and fit to the shape of the experi-

mental data given in Fig. 5, thus determining the constant b v:.' Eq<, (l2)e

above. Integration over all angles» 6, and normalizing to unity deter-

mined the constant a. Knowledge of the total cross section for scattering

«f M T»y H2 then imm«4iately gave the absolute differential scattering

cz>«8s section, which upon reinsertion into bracket term .in Eq. (10) gave

th« absolute <§g«ss seetion calibration shown in Fig. 5» It is important

to note that the absolute value scale so obtained is not the true total

cress sect&Stt for the scattering of both particles but the absolute

effective cross session when using an electron-impact ioai&ation detector.

Calibration of the reactive scattering cross section becomes possible

upoa determination of the apparatus constants, Kn.,n2V8 , through the use of

Bo.. (I0)o Ira ppasfeice, the procedure was to measure the ratio of the

reaction product signal and the scattered mass 2 signal, without explicit

ovftluation of the apparatus constants.

The differential reactive scattering cross section obtained

under the assumptions made is given by

5* • (7o5 ± 3.8)10°17 (1 - -2- ) cos2 1.35(180° -9), (v > v )cm2
v

s 0 , v < v

• V-\
o(v)

V <
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The specified uncertainty reflects only repeatability of the ratio of

reactive HD to mass 2 signals. The calibrated laboratory differential

scattering cross section is shown in Figo 3.

The rate constant corresponding to this cross section is 1.2 +.

••U 2 •
0.6 x 10 en /sec. This bulk rate is calculated by inserting Eq, (lU)

into Eq. (15) and using the effective kinetic temperature for the present

experiment, T_. « ll»00°K.
a

k(Tfi) = J a(v)vf (v)dv (15)

where

2 -av2

and u is the reduced mass of the reactants.

Sxtrapolation of the lower temperature rate constant measurements

of LeRoy, Ridley and Quickert , to the effective temperature in the

-*12 3present experiments gives a value of 5.6 x 10 cm /sec. Considering

the inherent uncertainties in the simple model used in discussion the

present experimental results and the uncertainties of extrapolating the

lower temperature data to the effective temperature of the crossed beam

experiment, the discrepancy between the two rate coefficient values is

remarkably small.
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VI. CONCLUSION

The experimental reactive differential cross section for D + H_

unquestionably verifies microscopic theoretical predictions that near

threshold, re actively formed HD receeds from the collision with an

anisotropic center-of-mass distribution that peaks roughly 180 degrees

from the general direction of the attacking D atonu This angular distri-

bution coupled with HD recoil velocity measurements which indicates

that the D-H-H reacting configuration is short lived compared to rota-

tional times also confirms that the HD prefers to leave the collision with

little or no internal energy. The estimate of the total reactive cross

section is in satisfactory agreement with extrapolated bulk rate data and

is consistent with semi-classical prediction.

Detailed comparison of the experimental and theoretical differen-

tial cross sections indicates disagreement over the width of the HD

angular distribution in the center-of-mass0 This disagreement is not

surprising considering the rather short period of time that theory and

experiment have had to interact concerning microscopic details. Certainly

we should look forward to the publication of more theoretical studies

and to the data of more refined hydrogen reaction experiments before

attempting to accurately assess the degree of theoretical understanding

for this fundamental reactiona .
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FIGURE CAPTIONS

Fig. 1. Velocity vector diagram for KD formed in the reaction D * HL •+
HD + H and for scattering of undissociated HD impurity in tse
D atom beam.

Fig. 2« Schematic for the crossed beam experiment.

Fig. 3. Angular distribution of reactively scattered HD.

Fig, 1*. Velocity vector diagram shoving the measured HD velocities.
Also shown is the predicted elastically scattered HD impurity
velocities.

Fig. 5, Angular distribution of the sum of the elastic scattering of D
on Hp and H_ on D.

Fig. 6. Comparison of the experimental data with the calculated laboratory
distribution for a C. M. angular distribution of the form COSN

M(l80° - 0).

Fig. 7. Comparison of the experimental C. M. Angular distribution with
theory. Distributions considered in the experimental analysis

; are of the functional form COSH M(l80° - 9),

Fig. 8. Comparison of the present experimental results with those of
Datz and Taylor.
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