6,814 research outputs found
A Logic of Blockchain Updates
Blockchains are distributed data structures that are used to achieve
consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts
(like Ethereum). Although blockchains gained a lot of popularity recently,
there is no logic-based model for blockchains available. We introduce BCL, a
dynamic logic to reason about blockchain updates, and show that BCL is sound
and complete with respect to a simple blockchain model
Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter
We propose that the observed cooling of the neutron star in Cassiopeia A is
due to enhanced neutrino emission from the recent onset of the breaking and
formation of neutron Cooper pairs in the 3P2 channel. We find that the critical
temperature for this superfluid transition is ~0.5x10^9 K. The observed
rapidity of the cooling implies that protons were already in a superconducting
state with a larger critical temperature. Our prediction that this cooling will
continue for several decades at the present rate can be tested by continuous
monitoring of this neutron star.Comment: Revised version, to be published in Phys. Rev. Let
How does the substrate affect the Raman and excited state spectra of a carbon nanotube?
We study the optical properties of a single, semiconducting single-walled
carbon nanotube (CNT) that is partially suspended across a trench and partially
supported by a SiO2-substrate. By tuning the laser excitation energy across the
E33 excitonic resonance of the suspended CNT segment, the scattering
intensities of the principal Raman transitions, the radial breathing mode
(RBM), the G-mode and the D-mode show strong resonance enhancement of up to
three orders of magnitude. In the supported part of the CNT, despite a loss of
Raman scattering intensity of up to two orders of magnitude, we recover the E33
excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak
intensity ratio between G-band and D-band is highly sensitive to the presence
of the substrate and varies by one order of magnitude, demonstrating the much
higher defect density in the supported CNT segments. By comparing the E33
resonance spectra measured by Raman excitation spectroscopy and
photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we
observe that the peak energy in the PL excitation spectrum is red-shifted by 40
meV. This shift is associated with the energy difference between the localized
exciton dominating the PL excitation spectrum and the free exciton giving rise
to the Raman excitation spectrum. High-resolution Raman spectra reveal
substrate-induced symmetry breaking, as evidenced by the appearance of
additional peaks in the strongly broadened Raman G band. Laser-induced line
shifts of RBM and G band measured on the suspended CNT segment are both linear
as a function of the laser excitation power. Stokes/anti-Stokes measurements,
however, reveal an increase of the G phonon population while the RBM phonon
population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure
Relationships between magnetic foot points and G-band bright structures
Magnetic elements are thought to be described by flux tube models, and are
well reproduced by MHD simulations. However, these simulations are only
partially constrained by observations. We observationally investigate the
relationship between G-band bright points and magnetic structures to clarify
conditions, which make magnetic structures bright in G-band. The G-band
filtergrams together with magnetograms and dopplergrams were taken for a plage
region covered by abnormal granules as well as ubiquitous G-band bright points,
using the Swedish 1-m Solar Telescope (SST) under very good seeing conditions.
High magnetic flux density regions are not necessarily associated with G-band
bright points. We refer to the observed extended areas with high magnetic flux
density as magnetic islands to separate them from magnetic elements. We
discover that G-band bright points tend to be located near the boundary of such
magnetic islands. The concentration of G-band bright points decreases with
inward distance from the boundary of the magnetic islands. Moreover, G-band
bright points are preferentially located where magnetic flux density is higher,
given the same distance from the boundary. There are some bright points located
far inside the magnetic islands. Such bright points have higher minimum
magnetic flux density at the larger inward distance from the boundary.
Convective velocity is apparently reduced for such high magnetic flux density
regions regardless of whether they are populated by G-band bright points or
not. The magnetic islands are surrounded by downflows.These results suggest
that high magnetic flux density, as well as efficient heat transport from the
sides or beneath, are required to make magnetic elements bright in G-band.Comment: 9 pages, 14 figures, accepted for publication in A&
Phase behaviour of additive binary mixtures in the limit of infinite asymmetry
We provide an exact mapping between the density functional of a binary
mixture and that of the effective one-component fluid in the limit of infinite
asymmetry. The fluid of parallel hard cubes is thus mapped onto that of
parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a
very asymmetric mixture can only occur between a solvent-rich fluid and a
permeated large particle solid or between two large particle solids with
different packing fractions. Comparing with hard spheres mixtures we conclude
that the phase behaviour of very asymmetric hard-particle mixtures can be
determined from that of the large component interacting via an adhesive-like
potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses
revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E
(Rapid Comm.
Search for extraterrestrial antineutrino sources with the KamLAND detector
We present the results of a search for extraterrestrial electron
antineutrinos ('s) in the energy range using the KamLAND detector. In an exposure of
4.53 kton-year, we identify 25 candidate events. All of the candidate events
can be attributed to background, most importantly neutral current atmospheric
neutrino interactions, setting an upper limit on the probability of B
solar 's converting into 's at
(90% C.L.), if we assume an undistorted shape. This limit
corresponds to a solar flux of or an event
rate of above the energy threshold
. The present data also allows us to set more
stringent limits on the diffuse supernova neutrino flux and on the annihilation
rates for light dark matter particles.Comment: 22 pages, 6 figure
The Optical System for the Large Size Telescope of the Cherenkov Telescope Array
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is
designed to achieve a threshold energy of 20 GeV. The LST optics is composed of
one parabolic primary mirror 23 m in diameter and 28 m focal length. The
reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The
total effective reflective area, taking into account the shadow of the
mechanical structure, is about 368 m. The mirrors have a sandwich structure
consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm
thickness, and another glass sheet on the rear, and have a total weight about
47 kg. The mirror surface is produced using a sputtering deposition technique
to apply a 5-layer coating, and the mirrors reach a reflectivity of 94%
at peak. The mirror facets are actively aligned during operations by an active
mirror control system, using actuators, CMOS cameras and a reference laser.
Each mirror facet carries a CMOS camera, which measures the position of the
light spot of the optical axis reference laser on the target of the telescope
camera. The two actuators and the universal joint of each mirror facet are
respectively fixed to three neighboring joints of the dish space frame, via
specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
- …