12,427 research outputs found

    The identification of continuous, spatiotemporal systems

    Full text link
    We present a method for the identification of continuous, spatiotemporal dynamics from experimental data. We use a model in the form of a partial differential equation and formulate an optimization problem for its estimation from data. The solution is found as a multivariate nonlinear regression problem using the ACE-algorithm. The procedure is successfully applied to data, obtained by simulation of the Swift-Hohenberg equation. There are no restrictions on the dimensionality of the investigated system, allowing for the analysis of high-dimensional chaotic as well as transient dynamics. The demands on the experimental data are discussed as well as the sensitivity of the method towards noise

    Design and calibration of a rocket-borne electron spectrometer for investigation of particle ionization in the nighttime midlatitude E region

    Get PDF
    An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented

    The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles

    Get PDF
    To better understand the role of the German Bight (GB) as a nursery area for juvenile North Sea sprat Sprattus sprattus we sought to determine whether the area may receive only locally or also externally produced offspring. We sampled juveniles during 3 trawl surveys in the GB in August, September, and October 2004 and applied otolith microstructure analysis in order to reconstruct their distributions of the day-of-first-increment-formation (dif). These were contrasted with spatial and seasonal patterns of sprat egg abundance in the GB and its adjacent areas, observed during 6 monthly plankton surveys. It was found that the majority of juveniles originated mainly from April/May 2004, coinciding with high spawning activity west of the GB, whereas spawning and larval production inside the GB peaked notably later, in May/June. This indicated that a large proportion of juveniles was produced outside the GB and transported subsequently into it through passive and/or active migration. Shifts to later mean difs from one survey to the next and length distributions indicative of the simultaneous presence of multiple cohorts, supported the notion that the GB is a complex retention and nursery area for sprat offspring from different North Sea spawning grounds and times. Later born juveniles had significantly faster initial growth rates than earlier born conspecifics, which was likely temperature-mediated, given the strong correlation between back-calculated growth histories and sea surface temperature as a proxy for thermal histories of juveniles (r(2) = 0.52). (C) 2009 Elsevier B.V. All rights reserved

    Weatherford v. Bursey: Surreptitious Invasion… into the Legal Camp of the Defense

    Get PDF

    A rocket-borne pulse-height analyzer for energetic particle measurements

    Get PDF
    The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased

    Probing the evolving massive star population in Orion with kinematic and radioactive tracers

    Get PDF
    We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orion's individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page

    Parametric, nonparametric and parametric modelling of a chaotic circuit time series

    Full text link
    The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.Comment: 19 pages, 8 Fig
    corecore