158 research outputs found

    The involvement of CD14 in the activation of human monocytes by peptidoglycan monomers.

    Get PDF
    BACKGROUND: Cell-wall components of Gram-positive and Gram-negative bacteria induce the production of cytokines in human peripheral blood mononuclear cells. These cytokines are the main mediators of local or systemic inflammatory reaction that can contribute to the development of innate immunity. AIMS: This study was performed to analyze the involvement of CD14 molecule in the activation of human monocytes by peptidoglycan monomer (PGM) obtained by biosynthesis from culture fluid of penicillin-treated Brevibacterium divaricatum NRLL-2311. METHODS: Cytokine release of interleukin (IL)-1, IL-6 and tumor necrosis factor-alpha from human monocytes via soluble CD14 (sCD14) or membrane-associated (mCD14) receptor using anti-CD14 monoclonal antibody (MEM-18) or lipid A structure (compound 406) was measured in bioassays. RESULTS: The results demonstrated that PGM in the presence of human serum might induce the monokine release in a dose-dependent manner. The addition of sCD14 at physiologic concentrations enhanced the PGM-induced monokine release, while the monokine inducing capacity of PGM in the presence of sCD14 was inhibited by MEM-18. Effects of PGM were also blocked by glycolipid, compound 406, suggesting the involvement of binding structures similar to those for lipopolysaccharide. CONCLUSION: Activation of human monocytes by PGM involves both forms of CD14 molecule, sCD14 and mCD14

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples:Insights into Community Composition and Novel Lineages

    Get PDF
    Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara)

    Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples:Insights into Community Composition and Novel Lineages

    Get PDF
    Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara)

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte

    Ab initio studies of structures and properties of small potassium clusters

    Full text link
    We have studied the structure and properties of potassium clusters containing even number of atoms ranging from 2 to 20 at the ab initio level. The geometry optimization calculations are performed using all-electron density functional theory with gradient corrected exchange-correlation functional. Using these optimized geometries we investigate the evolution of binding energy, ionization potential, and static polarizability with the increasing size of the clusters. The polarizabilities are calculated by employing Moller-Plesset perturbation theory and time dependent density functional theory. The polarizabilities of dimer and tetramer are also calculated by employing large basis set coupled cluster theory with single and double excitations and perturbative triple excitations. The time dependent density functional theory calculations of polarizabilities are carried out with two different exchange-correlation potentials: (i) an asymptotically correct model potential and (ii) within the local density approximation. A systematic comparison with the other available theoretical and experimental data for various properties of small potassium clusters mentioned above has been performed. These comparisons reveal that both the binding energy and the ionization potential obtained with gradient corrected potential match quite well with the already published data. Similarly, the polarizabilities obtained with Moller-Plesset perturbation theory and with model potential are quite close to each other and also close to experimental data.Comment: 33 pages including 10 figure
    • …
    corecore