334 research outputs found

    Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    Get PDF
    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky screening pigment; enlarged rhabdom diameters; photopigment composition different from the drone’s ventral eye region and the worker bee’s eye. Thus, similar to other male insects, the drone compound eye is divided into a male-specific dorsal part and a ventral part resembling the worker bee’s eye. The functional significance of the sex-specific acute zone is discussed with respect to mating behaviour

    The Dynamic X-Ray Sky of the Local Universe

    Get PDF
    Over the next decade, we can expect time domain astronomy to flourish at optical and radio wavelengths. In parallel with these efforts, a dedicated transient machine operating at higher energies (X-ray band through soft gamma-rays) is required to reveal the unique subset of events with variable emission predominantly visible above 100 eV. Here we focus on the transient phase space never yet sampled due to the lack of a sensitive, wide-field and triggering facility dedicated exclusively to catching high energy transients and enabling rapid coordinated multi-wavelength follow-up. We first describe the advancements in our understanding of known X-ray transients that can only be enabled through such a facility and then focus on the classes of transients theoretically predicted to be out of reach of current detection capabilities. Finally there is the exciting opportunity of revealing new classes of X-ray transients and unveiling their nature through coordinated follow-up observations at longer wavelengths

    Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly

    Get PDF
    A new method of microstimulation of the blowfly eye using corneal neutralization was applied to the 6 peripheral photoreceptor cells (R1-R6) connected to one neuro-ommatidium (and thus looking into the same direction), whilst the receptor potential of a dark-adapted photoreceptor cell was recorded by means of an intracellular microelectrode. Stimulation of the photoreceptor cells not impaled elicited responses in the recorded cell of about 20% of the response elicited when stimulating the recorded cell. This is probably caused by gap junctions recently found between the axon terminals of these cells. Stimulation of all 6 cells together yielded responses that were larger and longer than those obtained with stimulation of just the recorded cell, and intensity-response curves that deviated more strongly from linearity. Evidence is presented that the resistance of the axon terminal of the photoreceptor cells quickly drops in response to a light flash, depending on the light intensity. Incorporating the cable properties of the cell body and the axon, the resistance of the gap junctions, and the (adapting) terminal resistance, a theoretical model is presented that explains the measurements well. Finally, it is argued that the gap junctions between the photoreceptor cells may effectively uncouple the synaptic responses of the cells by counteracting the influence of field potentials.

    The Advanced Compton Telescope

    Get PDF
    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations

    SPI observations of the diffuse 60Fe emission in the Galaxy

    Full text link
    Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 \pm 0.9) \times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 \pm 0.06. The current theoretical predictions are still consistent with our result.Comment: 10 pages, 7 figures, 2 tables, A&A in pres

    Radioactive 26Al and massive stars in the Galaxy

    Get PDF
    Gamma-rays from radioactive 26Al (half life ~7.2 10^5 yr) provide a 'snapshot' view of ongoing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along the plane of the Galaxy. This led to the conclusion1 that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show locally-produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/-0.8) M_sol of 26Al. We use this to estimate that the frequency of core collapse (i.e. type Ib/c and type II) supernovae to be 1.9(+/- 1.1) events per century.Comment: accepted for publication in Nature, 24 pages including Online Supplements, 11 figures, 1 tabl

    26Al in the inner Galaxy

    Full text link
    We performed a spectroscopic study of the 1809 keV gamma-ray line from 26Al decay in the Galaxy using the SPI imaging spectrometer with its high-resolution Ge detector camera on the INTEGRAL observatory. We analyzed observations of the first two mission years, fitting spectra from all 7130 telescope pointings in narrow energy bins to models of instrumental background and the 26Al sky. Instrumental background is estimated from independent tracers of cosmic-ray activation. The shape of the 26Al signal is compared to the instrumental response to extract the width of the celestial line. We detect the 26Al line at \~16sigma significance. The line is broadened only slightly, if at all; we constrain the width to be below 2.8 keV (FWHM, 2 sigma). The average Doppler velocities of 26Al at the time of its decay in the interstellar medium (decay time~1.04 My) therefore are probably around 100 km/s, in agreement with expectations from Galactic rotation and interstellar turbulence. The flux and spatial distribution of the emission are found consistent with previous observations. The derived amount of 26Al in the Galaxy is 2.8 (+/-0.8) M_solar.Comment: 7 pages with 7 figures; accepted for publication in Astronomy & Astrophysic
    corecore