4,120 research outputs found

    Wave function Monte Carlo method for polariton condensates

    Full text link
    We present a quantum jump approach to describe coupled quantum and classical systems in the context of Bose-Einstein condensation in the solid state. In our formalism, the excitonic gain medium is described by classical rate equations, while the polariton modes are described fully quantum mechanically. We show the equivalence of our method with a master equation approach. As an application, we compute the linewidth of a single mode polariton condensate. Both the line broadening due to the interactions between polaritons and the interactions with the reservoir excitons is taken into account.Comment: 6 pages, 2 figure

    Design and experimental validation of a compact collimated Knudsen source

    Get PDF
    In this paper we discuss the design and performance of a collimated Knudsen source which has the benefit of a simple design over recirculating sources. Measurements of the flux, transverse velocity distribution and brightness at different temperatures were conducted to evaluate the performance. The scaling of the flux and brightness with the source temperature follow the theoretical predictions. The transverse velocity distribution in the transparent operation regime also agrees with the simulated data. The source was found able to produce a flux of 101410^{14} sβˆ’1^{-1} at a temperature of 433 K. Furthermore the transverse reduced brightness of an ion beam with equal properties as the atomic beam reads 1.7Γ—1021.7 \times 10^2 A/(m2{}^2 sr eV) which is sufficient for our goal: the creation of an ultra-cold ion beam by ionization of a laser-cooled and compressed atomic rubidium beam

    Lagekostenbedrijf behaalt laag vervangingspercentage

    Get PDF
    In de praktijk blijkt de veevervanging op het Lagekostenbedrijf de nodige knelpunten op te leveren

    Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams

    Get PDF
    A two-step photoionization strategy of an ultracold rubidium beam for application in a focused ion beam instrument is analyzed and implemented. In this strategy the atomic beam is partly selected with an aperture after which the transmitted atoms are ionized in the overlap of a tightly cylindrically focused excitation laser beam and an ionization laser beam whose power is enhanced in a build-up cavity. The advantage of this strategy, as compared to without the use of a build-up cavity, is that higher ionization degrees can be reached at higher currents. Optical Bloch equations including the photoionization process are used to calculate what ionization degree and ionization position distribution can be reached. Furthermore, the ionization strategy is tested on an ultracold beam of 85^{85}Rb atoms. The beam current is measured as a function of the excitation and ionization laser beam intensity and the selection aperture size. Although details are different, the global trends of the measurements agree well with the calculation. With a selection aperture diameter of 52 ΞΌ\mum, a current of (170Β±4)\left(170\pm4\right) pA is measured, which according to calculations is 63% of the current equivalent of the transmitted atomic flux. Taking into account the ionization degree the ion beam peak reduced brightness is estimated at 1Γ—1071\times10^7 A/(m2 ^2\,sr \,eV).Comment: 13 pages, 9 figure

    Input output linearization on the H-drive including tilt of the beam

    Get PDF

    Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations

    Get PDF
    We have implemented the sweep algorithm for the variational optimization of SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy

    Energy-weighted density matrix embedding of open correlated chemical fragments

    Get PDF
    We present a multi-scale approach to efficiently embed an ab initio correlated chemical fragment described by its energy-weighted density matrices, and entangled with a wider mean-field many-electron system. This approach, first presented in Phys. Rev. B, 98, 235132 (2018), is here extended to account for realistic long-range interactions and broken symmetry states. The scheme allows for a systematically improvable description in the range of correlated fluctuations out of the fragment into the system, via a self-consistent optimization of a coupled auxiliary mean-field system. It is discussed that the method has rigorous limits equivalent to existing quantum embedding approaches of both dynamical mean-field theory, as well as density matrix embedding theory, to which this method is compared, and the importance of these correlated fluctuations is demonstrated. We derive a self-consistent local energy functional within the scheme, and demonstrate the approach for Hydrogen rings, where quantitative accuracy is achieved despite only a single atom being explicitly treated.Comment: 14 pages, 8 figure

    Controlling the pair momentum of the FFLO state in a 3D Fermi gas through a 1D periodic potential

    Full text link
    The question whether a spin-imbalanced Fermi gas can accommodate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been the subject of intense study. This state, in which Cooper pairs obtain a nonzero momentum, has hitherto eluded experimental observation. Recently, we demonstrated that the FFLO state can be stabilized in a 3D Fermi gas, by adding a 1D periodic potential. Until now it was assumed that the FFLO wave vector always lies parallel to this periodic potential (FFLO-P). In this contribution we show that, surprisingly, the FFLO wave vector can also lie skewed with respect to the potential (FFLO-S). Starting from the partition sum, the saddle-point free energy of the system is derived within the path-integral formalism. Minimizing this free energy allows us to study the different competing ground states of the system. To qualitatively understand the underlying pairing mechanism, we visualize the Fermi surfaces of the spin up and spin down particles. From this visualization, we find that tilting the FFLO wave vector with respect to the direction of the periodic potential, can result in a larger overlap between the pairing bands of both spin species. This skewed FFLO state can provide an additional experimental signature for observing FFLO superfluidity in a 3D Fermi gas.Comment: 19 pages, 3 figure

    The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006

    Get PDF
    The urban heat island (UHI) over Paris during summer 2006 was simulated using the Advanced Regional Prediction System (ARPS) updated with a simple urban parametrization at a horizontal resolution of 1 km. Two integrations were performed, one with the urban land cover of Paris and another in which Paris was replaced by cropland. The focus is on a five-day clear-sky period, for which the UHI intensity reaches its maximum. The diurnal evolution of the UHI intensity was found to be adequately simulated for this five day period. The maximum difference at night in 2 m temperature between urban and rural areas stemming from the urban heating is reproduced with a relative error of less than 10%. The UHI has an ellipsoidal shape and stretches along the prevailing wind direction. The maximum UHI intensity of 6.1 K occurs at 23:00 UTC located 6 km downstream of the city centre and this largely remains during the whole night. An idealized one-column model study demonstrates that the nocturnal differential sensible heat flux, even though much smaller than its daytime value, is mainly responsible for the maximum UHI intensity. The reason for this nighttime maximum is that additional heat is only affecting a shallow layer of 150 m. An air uplift is explained by the synoptic east wind and a ramp upwind of the city centre, which leads to a considerable nocturnal adiabatic cooling over cropland. The idealized study demonstrates that the reduced vertical adiabatic cooling over the city compared to cropland induces an additional UHI build-up of 25%. The UHI and its vertical extent is affected by the boundary-layer stability, nocturnal low-level jet as well as radiative cooling. Therefore, improvements of representing these boundary-layer features in atmospheric models are important for UHI studies
    • …
    corecore