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Summary 

In the Dynamics and Control Technology laboratory of the Department of Mechanical 
Engineering a so called H-drive servo system is used for experimenting with different 
types of controllers. The H-drive servo system is an XY-table with three linear motors 
that has been build by Philips' Centre for Industrial Technology (CFT) as part of an 
Advanced Component Mounter (ACM) for pick-and-place operations on printed circuit 
boards. 

In this report a controller is designed which makes stabilization and tracking of the x- 
and y-position of the X-motor possible. An extra feature of the controller is the tilt 
stabilization of the beam on which the X-motor is mounted. The controller consists of a 
high- and low-level controller. The high-level controller provides a reference trajectory 
while the low-level controller generates the desired current to the linear motors. The 
advantage of this control structure is the possibility to suppress cogging and friction 
forces. 

The high level controller uses an input output linearization technique to make the output 
(motor positions) linear to the input of a tracking controller. Because of the H-drive 
model nature it appears that controlling the H-drive is possible when the input output 
linearization provides a value for the desired acceleration. By integrating the desired 
acceleration twice a reference trajectory can be generated. The low level controller 
generates a current using the difference between the real trajectory and the trajectory 
generated by the high level controller. The used low-level controller consists of three 
PID-controllers and is designed in a report of Aart-Jan van der Voort. 

To check the validity of the designed controller a simulation program is made. In this 
simulation program the X-LiMMS has to follow a certain trajectory. The chosen tra- 
jectory makes verification of the stabilizing and tracking performance of the controller 
possible. The simulation and experimental results correspond well but the output of 
the controller (currents) shows a noisy behavior of the experiment. The applied cur- 
rents during the experiment are also significantly larger than the simulated ones. This is 
probably caused by the friction and cogging forces in the H-drive. To improve the exper- 
imental results a feedforward amplification is introduced which results in a significant - 
reduction of the tracking error. 
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Chapter 1 

Introduction 

Within the section Dynamics and Control of the Department Mechanical Engineering 
research is done on controllability of underactuated systems. These systems contain 
more degrees of freedom than inputs. A teststand that is used for research on this 
subject is an adjusted H-drive. This H-drive is an XY-table with three linear motors 
i.e. Linear Motion Motor Systems (LiMMS). The two Y-LiMMS, which move parallel, 
are connected by a beam on which the X-LiMMS can move. On top of the X-LiMMS 
an extra degree of freedom is installed in the form of an unactuated pendulum that can 
rotate freely in the horizontal plane. 

To reduce complexity of the mathematical models, that are used for previous develop- 
ment of controllers, the assumption was made that the Y-LiMMS and the beam behave 
like one rigid body. This means that the angle between the Y-guidway and beam is 
assumed to  be always 90 degrees. The two Y-LiMMS can then be modelled like one 
LiMMS. 

Practically the Y-LiMMS and the beam are not constructed as one rigid body. The 
beam is connected to the Y-LiMMS by two joints, which allow a small rotation in the 
horizontal plane. That this system has a different dynamical behavior than the models 
assuming rigid body behavior of the Y-LiMMS and the beam can be explained by the 
following example. Presume an eccentric load on the beam, caused by the X-LiMMS, 
and that the angle between the beam and the Y-guide must remain 90 degrees. It is 
obvious that in this situation the nearest Y-LiMMS provides more force than the furthest 
Y-LiMMS. If both Y-LiMMS would provide an equal force, like models assuming rigid 
body behavior of the Y-LiMMS and the beam, the beam would tilt. 

This report is written within the scope of an internship where research is done on the 
controllability of the H-drive including tilt of the beam. The designed controller makes 
use of input output linearization and offers the possibility to stabilize the tilt of the 
beam. 

Chapter 2 of this report discusses the determination of the nonlinear H-drive model 
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which includes the tilt of the beam. In chapter 3 the input output linearization of the 
H-drive model is discussed. The aim of this linearization is to make the H-drive input 
(current to the LiMMS) linear to the H-drive outputs. The outputs of the H-drive 
will be defined as the x- and y-position of the X-LiMMS and the tilt of the beam. 
T'he control strategy which wiii be discussed in section 4 . i  employs a high and low 
ievei controiiei. The construction of the high !eve! contro!!er which ~lrn&es use ~f the 
input output linearization and a tracking controller is explained in section 4.2. By 
integrating the result of the high level controller twice a reference trajectory for the 
low level controller can be generated. The low level controller which consists of three 
PI lead/Lag controllers in series with a second-order low-pass generates an appropriate 
value for the currents to the LiMMS. In chapter 5 the results of a simulation and 
experiment will be presented. In the last chapter conclusions and recommendations are 
made. 



Chapter 2 

Equations of motion 

In this chapter the equations of motion are derived using Lagrange equations according 
to [7]. The dynamic model of the H-drive used to derive these equations is shown in 
figure 2.1. It consists of two parallel Y-axes that are connected by a beam, the X-axis. 

Figure 2.1: Schematic representation of the H-drive with generalized coordinates q = [y, cp,zIT. - 
source: [4] 

The beam, or X-axis, is connected to the Y-axes by two joints that allow rotations in 
the horizontal plane. Therefore the positions Y1 and Y2 do not need to be equal which 
can cause a tilt of the X-axis. The position of the beam along the X-axis and Y-axes is 
controlled by three Linear Motion Motors Systems (LiMMS). Each linear motor has its 
own servo system, encoder sensors and is current-controlled. The position of the three 
LiMMS, and the beam can be written in the absolute coordinates Z =  [&, & I T .  For the 
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dynamic model depicted in figure 2.1 this results in; 

in which Fb, Fx, Fyl and 6 2  are the position vectors of the beam, X-LiMMS, Y1- LiMMS 
and Y2-LiMMS respectively. To indicate these positions the generalized coordinate 
system [y, cp, x] is used. Note that the origin of the absolute coordinate system is located 
in the middle of the Y1 and Y2 guide. The distance from the guides to the origin is 
denoted by D. 

The inputs of the system, the LiMMS currents, are given by g = [iyl, iY2, iXIT The 
forces generated by the LiMMS can then be written as 

where k ,  represents the motor constant of the LiMMS. Here it is assumed that all 
LiMMS have an equal motor constant. 

The outputs of the system are defined as: 

O l ~ t p t  y: represents the position of the X-LiMMS in the ei direction. The second 
output indicates the angle of the beam. The third output represents the position of the 
X-LiMMS in the e: direction. 

With the masses of the beam, X-LiMMS, Y1-LiMMS and Y2-LiMMS which are respec- 
tively mb, m x ,  my1 and my2 the kinetic energy can be derived from: 

Due to the complexity of the resulting equation the kinetic energy will be written out 
in Appendix A. 

When using the generalized coordinate system - q = [y, cp, xIT the non-conservative forces 
can be derived from: 

3 T 

(2.5) 
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Using (2.5) the non-conservative forces (2.2) can be written as: 

Now the equations of motion can be derived using the Lagrange approach. The Lagrange 
equation of motion is given by: 

Here, T and QnC represent respectively the kinetic energy and the generalized non- 
conservative forces as obtained before. The vector V represents the potential energy 
which is not present in the H-drive model. Using matrix/vector notation the Lagrange 
equation can be rewritten in the form 

which simplifies a conversion to a first order differential equation. In this equation 
represents z ( q )  the mass-matrix. C(q, q) contaim the coriolis and centripetal terms 
and g(q) encor&asses joint flexibility aibgravitational effects. The vector 7 represents 
the applied forces and torques, derived form - QnC. 

When C(g, $4 and &) are combined in the term H(q, - - q) and the vector z is written 
as B(q)g then equation (2.8) takes the form of - 

In appendix A the matrices E(q) - and B(q) and the vector H(q, q) are given for the - - - 
H-drive. 



Chapter 3 

Input output linearization 

In this chapter input output linearization (10-linearization), according to [5], will be 
applied on the H-drive model. A useful tool that will be used for this linearization is 
input output decoupling. Input output decoupling requires that, possibly after feedback, 
the i-th output is only influenced by the i-th input, and none of the other inputs. 

To apply 10-linearization as described in 151, state space notation m s t  be used. Using 
4 = [y, (P, " I T  the state will be defined as: - 

the equations of motion of the H-drive can be written in the form: 

For Multi Input Multi Output (MIMO) systems of this form we can introduce the notion 
of relative degree with respect to each output. The definition is 



Chapter 3. Input output linearization 7 

where yj is defined to be the smallest integer such that at least one of the inputs ui 

appears in yp). For the H-drive the relative degree for each output equals 2 so: = 2, 
7 2  = 2 and 73 = 2. This can be easily verified because the inputs firstly appear in the 
second derivative of the generalized coordinates. 

If the system has also well defined vector relative degree, then (3.4) can be written in 
the form 

L & l  
where 

NIX)=  [:!:I] , A(.)= 

The system has well defined vector relative degree yl,y2,73 at x if for all x: 

and the matrix A(x) is nonsingular. 

Because the H-drive system satisfies (3.7) and A(x) is non-singular, see appendix B, a 
local state feedback control law 

u = A-I (x) (v - N (x)) (3.8) 

can be defined which yields the closed loop, decoupled, system 

For the H-drive the state feedback control law (3.8) is presented in Appendix B. This 
state feedback control law can also be obtained using matrix/vector calculation. The re- 
sult of this method, which is the same as the previous method, is presented in Appendix 
C. 

Next the system (3.3) can be written in a so called normal form. To do this we introduce 
a new coordinate system. 

For the H-drive the preceding coordinate system can be written as: 
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The system equations, written in these coordinates have the following form 

The previous equations show that the outputs, Ji ,  t: and J? are decoupled w.r.t. the 
inputs, y, vl and vg. Observe that the system contains no zero or tracking dynamics. 

Because yl + 7 2  + 73 = 6 equals the dimension of the system and A(x)  has full rank the 
suggested 10-linearization also achieves full state linearization. 



Chapter 4 

Controller design 

4.1 Control strategy 

In chapter 3 it appears that the H-drive can be controlled by means of 10-linearization. 
According to [I] this is practically not the case because the controller is not able to 
suppress all unmodelled influences such as friction and cogging. Therefore in [I] the so- 
called "virtual internal model following control" approach according to [3] is adopted. 
In Figure 4.1 the control structure of this approach is shown. In this structure the result 

-------------- output 
Servo H-drive controller state 

lServO~ & k i  10 ControIIer kc' 
trajectory 

reference 

Figure 4.1: Control structure of the H-drive. source [4] 

of the high level 10-controller (desired acceleration) is integrated twice to generate a 
reference trajectory for the low level servo controller. For the H-drive the low level 
servo controller, derived in [6], consists of three feed forward controllers of the type PI 
lead/lag in series with a second-order low-pass with a cutt-off frequency at 300 Hz and 
are given by: 

0.6755s2+106.1s+4000 
Cse rvO,~  = 4.4806~10-gs3+1.6892.10-5s2+1.5920.10-2s 

1. 182s2+185.7s+7000 
(4.1) 

 servo,^ = 4.4806~10-gs~t1.6892.10-5s2+l.5920.10-"s 
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For the second term in (4.2), the angular acceleration, a different controller has to be 
defined. 

vz = -a6+ - a5e,(t) (4.5) 

The purpose of this controller is to stabilize the angle of the beam at pd. In the equation 
represents e,(t) the tracking error p(t) -pd. The coefficients as and a6 have to  be chosen 
so that X~ + a6X -+ as is Hurwitz. Note that in the most situations pd = 0. 

Summarizing the preceding results the tracking controller for the 10-linearization can 

where 

In theory the poles (roots) can be placed anywhere in the left-half plane but in practice 
this is not the case. The limitation of the pole position will be determined by the 
sampling frequency of the system. A higher sampling frequency makes a pole placement 
further in the left-half plane possible. 



Chapter 5 

Simulations and Experiments 

To test the controller strategy, sketched in figure 4.1, a Simulink program is made 
(Appendix E). This program contains the controller, a reference trajectory generator 
and a H-drive block which is either a link to the physical H-drive or the H-drive model 
from chapter 2. 

The first thing that will be discussed in this chapter is the reference trajectory that was 
used for the simulation and experiment. Secondly, the used construction parameters 
are summarized. In the last two sections the simulation and the experimental results 
will be presented. 

5.1 Reference trajectory 

Before a computer simulation or experiment can be done one has to choose an appro- 
priate reference trajectory. The reference trajectory has to offer the possibility to test 
the stabilization and tracking capability of the controller. For simplicity a circular tra- 
jectory of the X-LiMMS as in figure 5.1 is chosen. The reference tilt angle is kept equal 
to zero (no tilt of the beam). 

To indicate different stages in the trajectory description the numbers 1,2 and 3 are 
added to figure 5.1. The stabilization property can be evaluated from the origin (point 
1) to the starting point of the circle trajectory, point 3. As can be seen in figure 5.1 
the X-LiMMS reference position stays the same from point 2 to 3, so the controller has 
the opportunity to stabilize at this position. The tracking property can be evaluated 
during the circular motion which is started at point 3. 

In figure 5.2 the reference trajectory of the X-LiMMS in the x- and y-direction is de- 
picted. The points 1, 2 and 3 represent the same positions as the ones in figure 5.1. In 
figure 5.2 the points 4 and 5 are added to indicate significant points for the circle trajec- 
tory. In the first part of the trajectory, point 1-2, the X-LiMMS is moved tot a starting 
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Figure 5.1: Reference trajectory for the computer simulation and experiment 

Desired v traiectory X-LiMMS 

Desired x traiectory X-LiMMS 

" 
time [sec] 

Figure 5.2: Reference trajectories for the x- and y-position of the X-LiMMS 

position on the circle trajectory. The second part, point 2-3, allows the controller to 
stabilize the X-LiMMS at the starting position. At point 3 the X-LiMMS starts ac- 
celerating (a  = 0.32[rad/sec2]) on the circular trajectory. At point 4 the X-LiMMS is 
rotating with a frequency of 0.25[Hz]. This rotational speed is maintained until point 
5 is reached where the deceleration starts until the speed of the X-LiMMS equals zero. 
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5.2 Parameters 

To make the controller operational values for the construction parameters have to be 
chosen. Table 5.2 is a summary of the used values. These values are determined in [l] 
using a linear least-squares identification procedure. 

parameter 
D 

1 

m ~ 2  

m x  

mb 

Jb 

km 

value 
0.3 [m] 

9.12 [kg] 
9.12 [kg] 
9.12 [kg] 
32.08 [kg] 

0.9624 [kg . m2] 
74.4 [N/A] 

Table 5.1: Parameter values used for the simulation and experiment 

A tool that can be used to tune the behavior of the H-drive is the placement of the 
tracking controller poles. The pole positions that are used for the simulation and exper- 
iment are the same. For the y and x tracking controller both poles are placed a t  -85. 
For the tracking controller of the beam angle cp both poles where placed at -80. The 
coefficient matrices of equation (4.7) result, with the proposed placement of the poles, 
in: 

170 0 7225 0 
k = [ , 160 :I ] , kl = [ , 6 y 0  72!d 

0 170 

5.3 Simulation results 

Prior to the experiment a simulation is done to check the functionality of the controller 
and to generate data that can be compared to the results of the experiment. By com- 
paring the results of the simulation and experiment a conclusion can be made with 
respect to the correctness of the in chapter 2 derived H-drive model. 

In figure 5.3 the tracking error of the simulation is shown. It can be seen that the 
tracking error during the acceleration of the X-LiMMS in the x-direction (figure 5.3: 
x - x,,f, stabilization part) stabilizes towards a nonzero value. This phenomenon is 
probably caused by the feedforward of the tracking controller and the PID-controller. 
At the constant speed and hold position parts, the tracking error converges quickly 
towards zero. The figure shows also that the maximum error occurs at the highest 
speed. 

Figure 5.4 shows the total state feedback u and the feedforward part of the state feed- 
back which is utilized in the tracking controller (equation (4.3): desired acceleration). 
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10-4 Tracking error 
1 I I I I 

x I o - ~  
I 

- 2 - 
L z - I -  
-a "-/ 

X 
1 - 1 -  
X 

-2 - 
I 

0 5 10 15 20 25 
time [sec] 

Figure 5.3: Simulation: Tracking error 

State Feedback 
1 / I I I I 

a- o 0.5 - 
a, 
rn . 
E O  
u 

F-0 5 - 
3 Stab~l~zatlon +I+ Tracking 

-I I I I I I I 
0 5 10 15 20 25 

time [sec] 

Figure 5.4: Simulation: Total state feedback u (continuous) and the feedforward part of the state 
feedback (dashed) 
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Observe that the feedforward for the angle of the beam equals zero. 

In figure 5.5 the currents to the LiMMS are shown. The "disturbances" in the plot 

Currents 
0.1 , I 

time [sec] 

Figure 5.5: Simulation: Currents ix, iyl and iyl - iyz 

for iyl - iyz are reflections of the step response of the PID-controller caused by the 
suddenly changing accelerations of the LiMMS. It can also be noticed that the difference 
between the currents iyl and iyz are relatively small in relation to the current iyl.  

5.4 Experimental results 

To prove the reliability of the designed controller an experiment is done with the H-drive 
in the Dynamics and Control Technology laboratory of the departement Mechanical 
Engineering. The parameters and pole placements that where used for this experiment 
are exactly the same as the ones used for the simulation. 

In this section the experimental results are presented. Figure 5.6 shows the tracking 
error. At the start of the time axis the tracking error contains a peak value. This is 
the correction that the controller makes on the initial position. During the acceleration 
and deceleration of the X-LiMMS one can observe that the tracking error converges 
towards a steady level. This phenomenon is also observable in the simulation results 
and is caused by the tracking and the PID-controller. 
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x I o - ~  Tracking error 
I ,  I I I I 

x I o - ~  

- 2 - 

0 5 10 15 20 25 

time [sec] 

Figure 5.6: Experiment: Tracking error 
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Figure 5.7: Experiment: Total state feedback u (continuous) and the feedforward part of the state 
feedback (dashed) 
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In the timespan (3.25-7.5 [see]) in which the controller can stabilize the X-LiMMS the 
tracking error forms a sinusoidal signal. The amplitude of this sinusoidal signal is 
probably the limit of the controller accuracy. The amplitude of this sinusoidal signal is 
influenced by the pole position. When the poles are placed far in the left-half plane then 
the gain k i  of the position error is large which nean that the co~trol  action 23  f a -  small 
position error is also re!ati.v~ely large. The cmsequence of this is that the X-LiMMS 
stzrts oscillating around the desired position. 

At the time where the X-LiMMS is starting to perform the circle trajectory (time 
7.5 [see]) the tracking errors in the y and p direction show a disturbance which is 
caused by the acceleration of the y axis. Because the X-LiMMS is positioned out of the 
center, the controller needs to send out different currents to the Y1 and Y2-LiMMS. 
The disturbance is caused by the convergence proces to these different currents. 

Remarkable are the three disturbances in the y - y,,f plot that occur at  the times 14, 
16 and 18 seconds. At these times x - x,,f reaches a maximum caused by the change 
of direction of the X-LIMMS. During this change of direction the acceleration of the 
X-LiMMS reaches a maximum. 

The main conclusion regarding the tracking error is that the tracking error of the y- 
and x-axis is strongly related to the imposed acceleration. The angular tracking error 
cp - cp,,f is caused and thus related to the position of the X-LiMMS. 

In the state feedback u, figure 5.7, the mutually dependence is even more present. The 
main difference of this plot with the one of the tracking error plot is the come-back of 
the peaks, at times 14, 16 and 18 seconds, in the uyz-plot. Moreover it can be concluded 
that amplification of the feedforward, the dashed line in the vl and us plot will leads to 
a smaller tracking error and less noise in the current plot, figure 5.8. This conclusion 
can be made because the tracking error shows a strong relationship to the imposed 
accelerations (feedforward). To investigate the previous conclusion the experiment is 
repeated for a larger feedforward. The results are shown in appendix D. 

The current plot is not providing as much insight as the previous plots but a few 
remarks can be made. During the stabilization the ix current oscillaties between an 
upper and lower level with a frequency of approximately 0.45[Hz]. The mean current 
is approximately 0.06[Amp]. The exact source of this oscillation is hard to determine 
but a relation to friction and/or cogging is not excluded. When comparing the iyl and 
iYz currents one can notice that the global amplitude of the iy2 current is larger. This 
can mean that the YZLiMMS is subject to larger friction or cogging forces or simply 
has a bigger mass. 

At the end of the experiment, when the LiMMS come to rest, a strange phenomena 
occurs. The current starts floating away fbrm zero while the position is maintained. 
The controller has possibly converged to a frequency which allows the current to float 
away while the position is held. 
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Currents 

0 5 10 15 20 25 
time [sec] 

Figure 5.8: Experiment: Currents i x ,  i y ~  and i y z  
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Conclusions and 
Recommendat ions 

The experiment has shown that the suggested control strategy can be employed on 
the H-drive. The experimental results are, what tracking error concerns, satisfying 
but some tuning of the used parameters, pole placements and the amplification of the 
feedforwards (appendix D) can improve the experimental results. The drift of the iyl 
and iy2 current is stil an unsolved problem which possibly can be suppressed with a 
low pass frequency filter between the controller output and the H-drive input. 

When comparing the results of the simulation and experiment it appears that the sim- 
ilarity is strong. I t  is obvious that the experimental results are more noisy, but this 
seems logical. The similarity of the current plots is not very good. The current applied 
on the LiMMS during the experiment is significantly lager than the current in the sim- 
ulation. This is probably caused by the friction and cogging forces which the H-drive 
is subject to. 

To give an impression of the accuracy of the developed controller a comparison with 
experimental results of another controller type can be made. When doing this attention 
should be paid to the level of development and additional features of this reference 
controller. In [2] Iterative Learning Control (ILC) is applied on the H-drive. The basic 
controller used in [2] consist of a PID type controller with a low pass filter and two 
notches. Parallel to this basic controller a ILC controller is installed. To determine the 
effect of the ILC several experiments in [2] are done. The results of the first experiment 
in which no ILC is applied can be used as a reference for the in this report developed 
controller. In this experiment a third order point to point trajectory for the X-LiMMS 
is defined. The maximum jerk, acceleration, velocity and displacement are respectively 
100[m/s3], 7.1 [m/s2], 0.5[m/s] and 0.29[m]. The maximal displacement error on the 
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desired third order trajectory is of order 1 .10-~[m].  The average displacement error is 
approximately 5 . 10-~[m]. This means that the order of the displacement error of this 
experiment is roughly the same as the one of the experimental results obtained with the 
feedforward gain. However the trajectory performed in [2] imposes larger accelerations 
and speeds then the one performed in this report. The performance of the cc~troller 
used in i2j wiii therefore perform better thar, the m e  devel~ped in this report. This can 
change when the model parameters and feedforward are better tuned. 

6.2 Recommendat ions 

During the development of the H-drive model and controller several issues that can 
lead to improvement of the experiment are noticed. A correction, regarding the H- 
drive model, that could improve the correspondence of the model and the H-drive is 
the modelling of the total rotational inertia. In this thesis the center of total rotational 
inertia is placed in the middle of the beam. The hinge of the Y1- or Y2-LiMMS will be 
a better position because the beam rotates mostly around these hinges. 

When studying the experimental results it appears that the determination of the rota- 
tional speed produces noisy results. It is not clear if the produced signal is correct or 
that the differentiation causes errors. Attempts to improve the results by inserting a 
low pass filter did only aggravate the problem. Investigation of the correctness of the 
rotational speed determination can improve the experiment because the noise in the 
state variable only wil be amplified in the input-output controller which deteriorates 
the feedback linearization. 



Appendix A 

Results of the Lagrange equations 
of mot ion 

In chapter 2 the Lagrange equations of motion are derived. In this appendix some 
results are presented. 

A. l  Kinetic energy 

The kinetic energy for the H-drive, as derived in equation 2.4, can be written out as 

A.2 Lsgrange equations of motion 

In (2.8) the Lagrange equations of motion are rewritten in matrix/vector form. In this 
equation M(q) represents the mass-matrix. C(q, q) contains the coriolis and centripetal 
terms and gTq) encompasses joint flexibility and gravitational effects. The vector 7 
represents the applied forces and torques, derived form Qnc. If C(g, 4) and g(q)  are 
combined in one term H(q, - - Q) and 7 is split up in & the matrices M, B and the vector 
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H will be given by: 

1 1 - sin(p) 
-D(l  + tan(p))2 -D sin(p)/ cos2 (p) I (A.3) 

0 1 
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Results of the I 0  linearization 

B . l  The matrix A ( x )  and vector N ( x )  

Using (3.6) the matrix A ( x )  and the vector N ( x )  for the H-drive will be given: 

Apl l  = CO" (p)k,, (cos4(p) Jg + (mg + 4m,2 + m, cos2 ( p )  D2 -I- 

((- cos(p)mb - 2mx cos3 ( c p )  - 2 cos(cp)my2) D + c o s 4 ( ~ ) m x x ) z ) / a  

Ap2] = cos2(cp) k m ( ~ ~ ~ 4 ( i o )  ~b + (m, cos2(cp) - mb) D2 + 
( ( -2m,  cos3 ( p )  + 2 cos(p)myl + cos(cp)rng) D + cos4 (p )mxx)x ) /a  

Ap31 = - sin(cp)LlmX 

A[21l = km cos2 ( p )  ((mg + 2mY2)D + m,x cos3 (cp)/a 

A[221 = km cos2 ( c p )  ((-2m,l - mb - 2mx cos2 ( c p ) )  D + m,x cos3 ( c p )  / a  

A[23] = 0 

A131] = sin(p)km C O S ( ~ )  (cos4(p) ~b + (mb + 4mY2 + m, cos2 ( c p ) )  D~ 

+ ((- cos(cp)mb - 2mx cos3 ( c p )  - 2 cos(cp)my2) D + cos4 (cp)m,z)x) / a  

A[32l = sin(cp) km C O S ( ~ )  (COS* ( p )  ~g + (m, C O S ~  ( p) - mg) ZI2 + 
((-2m, c o s 3 ( ~ )  + 2 cos(cp)rng1 + cos(p)mb)D + ~ o s ~ ( ~ ) m , x ) z ) / a  

A[33] = cos(cp)kmlm, (B.1) 

where 
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Npi  = -$(2(mb Jb + my2 Jb + myl Jb) cos6(p)k + 
((-5mY2 Jb - 3mb Jb - myl Jb) cos4(cp) sin(p) h + ((2mbmy2 + (2mb + 8my2)myl + 
2(mYl - my2)mx cos2(p)) cos2(p)j: + (mbmy2 + (-4my2 - mb)myl + 
(my, - 3m,2 - 2mb)m,  cos2 ( p ) )  sin2 (p)ci,D) D )  D + 
((myl Jb + mbJb + my2 Jb) c0s5(p) sin(cp)+ + (2(-myl + m,a)mx cos5(p)x + 
(-mbm,2 + (-4mya - mb)mYl + 
(10my2 + 2my1 + 6mb)m, cos2(p))  C O S ( ~ )  s in(p)$D)D + 
( ( -9my2 - 6mb - 3myl)mx cos4(p) sin(cp)ci,D + 
(2my2 + 2mYl + 2mb)m, cos5 ( P )  ~ in(p)c i ,x )x)x) /P  

N[21 = d((((4rna + 2myl + 6myz)m,  + 2mZ2 cos2(p)) cos4(p)x + 
(-2mbmy2 + (-2mb - 8my2)myl + 
((- llmy2 - myl - 4mb)m, - mx2 cos2 ( p ) )  cos2(p)) sin(p)ci,D)D + 
((4(-mYl - m,2 - mb)mx - 2mx2 cos2(p))  cos5(p)k + 
(4mb + myl + 7my2)m, cos2(p) sin(p)ci,D + mZ2 cos6(p)ci, s i n ( p ) x ) x ) / ~  

N[31 = $((-2mb - 2my2 - 2m,l) .ib cos5(p) sin(p)k + 
(Jb(2mb + 4m,2 + (-m, - 5my2 - 3mb - myl) cos2(p))  cos3(p)ci, + 
((-2mbmy2 + (-2mb - 8my2)m,l + (-2m,l+ 2my2)m, c o s 2 ( ~ ) )  cos(p)  s in(p)k + 
(-mbmy2 + (-4my2 - mb)myl - 2mxmy2 + 
(-myl - 3my2 - 2mb - m,)mx cos2(p))  cos(p)$D)D)D + 
((m, f myl + mb + my2) Jb c0s6 ( P ) $  + (2(my1 - m,z)m, cos4(p) sin(cp)k + 
(2mbmY2 + (2% + 8my2)m,1 + (-mbm,a + (-4my2 - mb)myl+ (my2 + myl)m, + 
(10m,2 + 2m,l + 6mb + 3m,)m, cos2(p))  cos2(p))$D)D + 
(((my2 - myl)m, + (-9my2 - 6mb - 3mYl - 3mx)m,  cos2(p))  cos3(cp)@D + 
(2my2 + 2myl + 2mb $. mx)mz C O ~ ~ ( ( P ) $ X ) X ) / P  P3) 

where 
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B .2 Non-singularity proof A ( x )  

The matrix A(x) has to be non-singular in the working area because an inverse must 
exist. Non-singularity of this matrix can be investigated with its determinant because 
the determinant of a singular matrix equals zero. The determinant of A(x) is given by 

Its easy to see that for p = f $ the numerator of the determinant equals zero, i.e. A(x) 
is singular. Note that this angle of the beam physically impossible is. 

When observing (B.5) the conclusion can be made that the ratio of the numerater 
and denominator is also important because a sharp raise of the denominator can cause 
near singularity of A(z). To investigate the previous observation a few constants are 
introduced. 

Using these constants and the coordinate transformation [z, xIT = [cos(cp), x] the deter- 
minant of A(x) can be written like 

Calculation of the constants, using the H-drive parameters in table B.l, and numerical 
analysis of the determinant for a range of work area coordinates shows that determinant 
is only small around the singularity point p = +in. In figure B.l the numerical results 

1 for a space spanned by x = [0.05,0.55] and p = [-in-, p] are shown. 
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Values of det(A) for various x and O 

Values of det(A) for varlous x and 4 

Figure B.l: Determinant value of A(x)  for a workspace spanned by cp = [-;-ir, ax], x = [0.05,0.55], 
above: 3d view of det(A),cp and x , below: 2d view of det(A) and cp 
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parameter value 
74.4 [N/A] 
9.12 [kg] 
9.12 [kg] 

mx 9.12 [lig] I 32.08 [kg] 
0.9624 [kgrn2] ! 1 0.3[rn] 

Table B.l: H-drive system parameters used for the numerical non-singularity analysis 

B.3 The state feedback law 

As seen in chapter 3 the state feedback control law of the H-drive can be written as 

u = A-I (x) [v - N (x)] 03.8) 

The state feedback control law 3 for the H-drive acccrding (B.8) will be given 



Appendix C 

I 0  linearization using 
mat rixlvector calculation 

As seen in chapter 2 the system outputs are defined as: 

y + D tan(p) - x sin(p) 

Y = [. - 

- D + x cos (9) 1 
The time derivatives of these outputs are: 

The second time derivative of these outputs can be calculated using: 

aj, ag 

Substitution of the equations of motion (3.2) in (C.3) yields: 

which can be simplified to 

When the state feedback control law 11 is defined to be 
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then (C. 5) yields the closed loop, decoupled system: 

y=c  - 

Finally the state feedback control law C.6 can be written in the form 

which corresponds to (3.8). From this result is appears that the matrix A(q, - - q) and the 
vector N(q, - - q) can be written like 



Appendix D 

Experiment with feedforward 
amplification 

In this appendix the results are shown for the experime~t with amplification of the 
feedforward. When introducing ky and k ,  as the amplification factors formula (4.6) can 
be written like: 

The optimal value for ky  and k ,  is experimentally determined and is of magnitude 2.3 
and 5 respectively. 

In the figures D.l,D.2 and D.3 the results are shown of the experiment, using the 
feedforward amplification. The in this experiment used pole placements and parameter 
values are the same as used in the experiment of chapter 5.4. 

As one can see the tracking error, figure D.l ,  of the y and x trajectory is reduced with 
respect to the experiment in chapter 5.4. The acceleration dependency is also faded. 
It is noted that the magnitude and shape of the tracking error of the beam angle is 
unchanged. This can be explained by the non-changed zero feedforward of the beam 
angle. 

The output of the tracking controller is globally the same but notice that the optimal 
feedforward signal, in figure D.2, matches the output signal. This means that the 
contribution of the tracking controller is decreased with respect to the feedforward. 
The change of the current signals, figure D.3, do not differ significantly from those in 
chapter 5.4 bud this seem logical because of the smal difference in position. 
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Figure D.1: Experiment using feedforward amplification: Tracking error 

State Feedback 

Figure D.2: Experiment using feedforward amplification: Tracking controller output [vl; v2; v3] (con- 
tinuous) and the Feedforward (dashed) 
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Currents 
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Figure D.3: Experiment using feedforward amplification: Currents ix, iyl and iyz 



Appendix E 

Programs used for the simulation 
and experiment 

The programs used for the simulation and experiment are stored on the personal corn 
puter of the H-drive and on a CD-rom which is added to this report. The programs are 
provided with comments and short instructions. 

The CD-rom contains also the XI$$ and Adobe pdf version of this report and the 
presentation. 
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