338 research outputs found

    Potential use of pepper waste and microalgae Spirulina sp. for bioelectricity generation

    Get PDF
    The research aimed to generate bioelectricity using pepper waste and the microalgae Spirulina sp by a double-chamber microbial fuel cell (dcMFC). A dcMFC was constructed with Cu and Zn electrodes, where organic waste and microalgae were placed in the anodic and cathodic chambers, respectively. Also, electrochemical parameters were measured for 35 days. Finally, possible electrogenic microorganisms were isolated and identified. It was possible to generate maximum values of current (6.04414 ± 0.2145 mA) and voltage (0.77328 ± 0.213 V). The maximum conductivity value was 134.1636 ± 7.121 mS/cm, while the internal resistance value was 83.784 . The values of power and current density reached were 584.45 ± 19.14 mW/cm 2 and 5.983 A/cm 2, respectively. The optimal operating pH was 4.59 ± 0.14. From the microbial growth on the anode, the yeast Yarrowia phangngaensis (1) and Pseudomonas stutzeri (2) were identified, which may be involved in the transfer of electrons to the electrode. In conclusion, it was possible to generate clean energy in a laboratory-scale dcMFC when pepper waste and Spirulina sp. were used. These results are promising because organic waste can generate sustainable and environmentally friendly energy

    In Vitro Effect of Molasses Concentration, pH, and Time on Chromium Removal by Trichoderma spp. from the Effluents of a Peruvian Tannery

    Get PDF
    The effluents generated by the tannery industry have a high content of chromium and other toxic elements, representing a potential threat to ecosystems. An eco-friendly alternative to treat these effluents is the use of microorganisms, such as fungi, with the capacity to biosorb heavy metals. The present work aims to determine the effect of the molasses concentration, pH variation, and time on the removal of total chromium using the filamentous fungus Trichoderma spp. An experimental design was adopted using pH (4 and 6), concentrations of molasses (0.5 and 1%), and time (8 and 12 days) as independent variables. The Trichoderma inoculum was constant in all the treatments. The different treatments were evaluated after 0, 8, and 12 days by taking 50 mL of sample from each bioreactor. The chromium concentration was subsequently determined in each sample. The results show that treatment 3 (1% molasses and pH 4) showed higher chromium removal after both 8 and 12 days. The concentrations of total chromium decreased from 665 mg/mL to values of 568 mg/mL by day 8 and 486 mg/mL by day 12. These values are, however, still above the maximum threshold imposed by Peruvian law regarding the discharge of non-domestic effluents into the sewage system. The results show that Trichoderma spp. can increasingly remove chromium from the effluent with longer incubation periods. However, future studies are necessary to determine the mechanisms of chromium biosorption by the fungus and the influence of other physicochemical parameters

    In Vitro Effect of Molasses Concentration, pH, and Time on Chromium Removal by Trichoderma spp. from the Effluents of a Peruvian Tannery

    Get PDF
    The effluents generated by the tannery industry have a high content of chromium and other toxic elements, representing a potential threat to ecosystems. An eco-friendly alternative to treat these effluents is the use of microorganisms, such as fungi, with the capacity to biosorb heavy metals. The present work aims to determine the effect of the molasses concentration, pH variation, and time on the removal of total chromium using the filamentous fungus Trichoderma spp. An experimental design was adopted using pH (4 and 6), concentrations of molasses (0.5 and 1%), and time (8 and 12 days) as independent variables. The Trichoderma inoculum was constant in all the treatments. The different treatments were evaluated after 0, 8, and 12 days by taking 50 mL of sample from each bioreactor. The chromium concentration was subsequently determined in each sample. The results show that treatment 3 (1% molasses and pH 4) showed higher chromium removal after both 8 and 12 days. The concentrations of total chromium decreased from 665 mg/mL to values of 568 mg/mL by day 8 and 486 mg/mL by day 12. These values are, however, still above the maximum threshold imposed by Peruvian law regarding the discharge of non-domestic effluents into the sewage system. The results show that Trichoderma spp. can increasingly remove chromium from the effluent with longer incubation periods. However, future studies are necessary to determine the mechanisms of chromium biosorption by the fungus and the influence of other physicochemical parameters

    CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells

    Get PDF
    Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell–derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke–induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.This work was supported by a CJ Martin Early Career Fellowship from the Australian National Health and Medical Research Council awarded to R.B.W.; NIH grant F30HL147426 awarded to K.M.A.; NIH grants U01TR001810, R01DK101501, and R01DK117940 awarded to A.A.W.; NIH grants R01HL135142, R01HL137927, and R01HL147148 awarded to M.H.C.; and NIH grants R01HL127200 and R01HL148667 awarded to X.Z

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    Olives and olive oil are sources of electrophilic fatty acid nitroalkenes

    Get PDF
    Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (‱NO) and nitrite (NO2-)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO 2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. © 2014 Fazzari et al

    Sublethal necroptosis signaling promotes inflammation and liver cancer

    Full text link
    It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-ÎșB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-ÎșB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-ÎșB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma
    • 

    corecore