28 research outputs found

    Towards Uniform Gene Bank Documentation In Europe – The Experience From The EFABISnet Project

    Get PDF
    In the EFABISnet project, a collaborative effort of EAAP, FAO and partners from 14 European countries, in cooperation with the European Regional Focal Point for Animal Genetic Resources (ERFP), national information systems for monitoring the animal genetic resources on breed level were established in Austria, Cyprus, Estonia, Georgia, Iceland, Ireland, Italy, Netherlands, Slovakia, Slovenia, Switzerland, and United Kingdom. The network was soon extended beyond the project plans, with the establishment of EFABIS databases in Finland, Greece, and Hungary. The network was then complemented by a set of inventories of national gene bank collections to strengthen the documentation of ex situ conservation programmes. These documentation systems were established by the National Focal Points for management of farm animal genetic resources. Here we present the experience gained in establishment of these national inventories of gene banks and their relevance to the Strategic Priority Areas of the Global Plan of Action which could be useful for other areas in the world

    Three Thousand Years of Continuity in the Maternal Lineages of Ancient Sheep (Ovis aries) in Estonia

    Get PDF
    lthough sheep (Ovis aries) have been one of the most exploited domestic animals in Estonia since the Late Bronze Age, relatively little is known about their genetic history. Here, we explore temporal changes in Estonian sheep populations and their mitochondrial genetic diversity over the last 3000 years. We target a 558 base pair fragment of the mitochondrial hypervariable region in 115 ancient sheep from 71 sites in Estonia (c. 1200 BC – AD 1900s), 19 ancient samples from Latvia, Russia, Poland and Greece (6800 BC – AD 1700), as well as 44 samples of modern Kihnu native sheep breed. Our analyses revealed: (1) 49 mitochondrial haplotypes, associated with sheep haplogroups A and B; (2) high haplotype diversity in Estonian ancient sheep; (3) continuity in mtDNA haplotypes through time; (4) possible population expansion during the first centuries of the Middle Ages (associated with the establishment of the new power regime related to 13th century crusades); (5) significant difference in genetic diversity between ancient populations and modern native sheep, in agreement with the beginning of large-scale breeding in the 19th century and population decline in local sheep. Overall, our results suggest that in spite of the observed fluctuations in ancient sheep populations, and changes in the natural and historical conditions, the utilisation of local sheep has been constant in the territory of Estonia, displaying matrilineal continuity from the Middle Bronze Age through the Modern Period, and into modern native sheep

    Microsatellite, blood group and transferrin protein diversity of Estonian dairy cattle breeds

    Get PDF
    This study investigates genetic diversity within and among three Estonian dairy cattle breeds (Estonian Native, Estonian Red and Estonian Holstein). A total of 36 markers (25 microsatellites, 10 blood group systems and transferrin protein) were investigated and the within-breed diversity was quantified by expected heterozygosity, number of private alleles and mean allelic richness. The population structure was studied by computing the inbreeding coefficients, breed differentiation and relationships were investigated with random drift-based measures and a factorial correspondence analysis. In addition, a neighbour-joining tree was drawn summarising allele sharing distances for 195 individuals of the Estonian breeds, Western Finncattle, and Danish Jersey. The Estonian breeds displayed generally similar levels of within-population diversity. Depending on the set of markers used 6.2 or 4.3% of the total genetic variation can be explained by differences among the breeds. Construction of the tree for individuals revealed a distinctive pattern of grouping for Estonian Holstein, Estonian Red and Danish Jersey, but Estonian Native and Western Finncattle appeared on the same branches. This indicates that the gene pool of Estonian Native largely overlaps with that of Western Finncattle. However, our genetic marker analysis shows that the three Estonian breeds are genetically differentiated, suggesting that the current gene pool of Estonian dairy cattle is diverse.

    Microsatellite, blood group and transferrin protein diversity of Estonian dairy cattle breeds

    Get PDF
    This study investigates genetic diversity within and among three Estonian dairy cattle breeds (Estonian Native, Estonian Red and Estonian Holstein). A total of 36 markers (25 microsatellites, 10 blood group systems and transferrin protein) were investigated and the within-breed diversity was quantified by expected heterozygosity, number of private alleles and mean allelic richness. The population structure was studied by computing the inbreeding coefficients, breed differentiation and relationships were investigated with random drift-based measures and a factorial correspondence analysis. In addition, a neighbour-joining tree was drawn summarising allele sharing distances for 195 individuals of the Estonian breeds, Western Finncattle, and Danish Jersey. The Estonian breeds displayed generally similar levels of within-population diversity. Depending on the set of markers used 6.2 or 4.3% of the total genetic variation can be explained by differences among the breeds. Construction of the tree for individuals revealed a distinctive pattern of grouping for Estonian Holstein, Estonian Red and Danish Jersey, but Estonian Native and Western Finncattle appeared on the same branches. This indicates that the gene pool of Estonian Native largely overlaps with that of Western Finncattle. However, our genetic marker analysis shows that the three Estonian breeds are genetically differentiated, suggesting that the current gene pool of Estonian dairy cattle is diverse.

    Molecular genetic variation in sheep of the central Volga area inhabited by Finno-Ugric peoples

    Get PDF
    Based on morphology, native northern European sheep breeds belong to the short tailed type, of which the Romanov is the only native example still distributed in northwest Russia. Besides this, there exist local sheep populations kept by Finno-Ugric peoples in the central Volga region, which represent additional genetic resources in the area. Four sheep populations from the central Volga region were genotyped for 20 microsatellites and compared with geographically proximate breeds (Estonian Whitehead and Blackhead, the Finnsheep and an exported and a native population of Russian Romanov) and with local populations in Estonia, Finland and Russian Karelia. Between-breed analyses including admixture analysis using molecular genetic markers and the phenotypic characteristics indicated that the Volgaic populations have not remained pure. The Viena population from Russian Karelia, the Romanov breed and, to some extent, the Komi population, have escaped extensive mixing, making them most attractive for conservation programmes. The study compared imported and native Romanov breed populations and the results suggest that the diversity parameters are markedly similar in these two populations.

    Microsatellite, blood group and transferrin protein diversity of Estonian dairy cattle breeds

    Get PDF
    This study investigates genetic diversity within and among three Estonian dairy cattle breeds (Estonian Native, Estonian Red and Estonian Holstein). A total of 36 markers (25 microsatellites, 10 blood group systems and transferrin protein) were investigated and the within-breed diversity was quantified by expected heterozygosity, number of private alleles and mean allelic richness. The population structure was studied by computing the inbreeding coefficients, breed differentiation and relationships were investigated with random drift-based measures and a factorial correspondence analysis. In addition, a neighbour-joining tree was drawn summarising allele sharing distances for 195 individuals of the Estonian breeds, Western Finncattle, and Danish Jersey. The Estonian breeds displayed generally similar levels of within-population diversity. Depending on the set of markers used 6.2 or 4.3% of the total genetic variation can be explained by differences among the breeds. Construction of the tree for individuals revealed a distinctive pattern of grouping for Estonian Holstein, Estonian Red and Danish Jersey, but Estonian Native and Western Finncattle appeared on the same branches. This indicates that the gene pool of Estonian Native largely overlaps with that of Western Finncattle. However, our genetic marker analysis shows that the three Estonian breeds are genetically differentiated, suggesting that the current gene pool of Estonian dairy cattle is diverse.

    Genetic differentiation among commercial and native cattle breeds

    No full text
    vo
    corecore