68 research outputs found

    A new method to estimate ionospheric electric fields and currents using data from a local ground magnetometer network

    Get PDF
    In this study we present a new method to estimate ionospheric electric fields and currents using ground magnetic recordings and measured or modeled ionospheric electric conductivity as the input data. This problem has been studied extensively in the past, and the standard analysis technique for such a set of input parameters is known as the KRM method (Kamide et al., 1981). The new method presented in this study makes use of the same input data as the traditional KRM method, but differs significantly from it in the mathematical approach that is used. In the KRM method one tries to find such a potential electric field, that the resulting current system has the same curl as the ionospheric equivalent currents. In the new method we take a different approach, so that we determine such a curl-free current system that, together with the equivalent currents, it is consistent with a potential electric field. This approach results in a slightly different equation, that makes better use of the information contained in the equivalent currents. In this paper we concentrate on regional studies, where the (unknown) boundary conditions at the borders of the analysis area play a significant role in the KRM solution. In order to overcome this complication, we formulate a novel numerical algorithm to be used with our new calculation method. This algorithm is based on the Cartesian elementary current systems (CECS). With CECS the boundary conditions are implemented in a natural way, making regional studies less prone to errors. We compare the traditional KRM method and our new CECS-based formulation using several realistic models of typical meso-scale phenomena in the auroral ionosphere, including a uniform electrojet, the Ω-bands and the westward traveling surge. It is found that the error in the CECS results is typically about 20%–40%, whereas the errors in the KRM results are significantly larger

    Induction effects on ionospheric electric and magnetic fields

    Get PDF
    Rapid changes in the ionospheric current system give rise to induction currents in the conducting ground that can significantly contribute to magnetic and especially electric fields at the Earth's surface. Previous studies have concentrated on the surface fields, as they are important in, for example, interpreting magnetometer measurements or in the studies of the Earth's conductivity structure. In this paper we investigate the effects of induction fields at the ionospheric altitudes for several realistic ionospheric current models (Westward Travelling Surge, Ω-band, Giant Pulsation). Our main conclusions are: 1) The secondary electric field caused by the Earth's induction is relatively small at the ionospheric altitude, at most 0.4 mV/m or a few percent of the total electric field; 2) The primary induced field due to ionospheric self-induction is locally important, ~ a few mV/m, in some "hot spots", where the ionospheric conductivity is high and the total electric field is low. However, our approximate calculation only gives an upper estimate for the primary induced electric field; 3) The secondary magnetic field caused by the Earth's induction may significantly affect the magnetic measurements of low orbiting satellites. The secondary contribution from the Earth's currents is largest in the vertical component of the magnetic field, where it may be around 50% of the field caused by ionospheric currents.<p> <b>Keywords.</b> Geomagnetism and paleomagnetism (geomagnetic induction) – Ionosphere (electric fields and currents

    New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Get PDF
    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere

    Inductive ionospheric solver for magnetospheric MHD simulations

    Get PDF

    Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements

    Get PDF
    Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4) global magnetohydrodynamic model with measurements. The GUMICS-4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS-4 than in observations, and key features of the auroral ovals—the Region 2 field-aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field-aligned currents enhance, whereas in GUMICS-4, the electrostatic potential weakens from winter to summer but field-aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS-4 agree with observations

    Effect of ICME-Driven Storms on Field-Aligned and Ionospheric Currents From AMPERE and SuperMAG

    Get PDF
    Funding Information: This work was supported by the Academy of Finland project 314664 and 314670. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium derived data products ( https://ampere.jhuapl.edu/ ). For the ground magnetometer data and substorm onset list, we gratefully thank the SuperMAG collaboration and all organizations involved ( https://supermag.jhuapl.edu/info/ ). For the geomagnetic indices, solar wind and interplanetary magnetic field data, we gratefully thank NASA/GSFC's Space Physics Data Facility's OMNIWeb ( https://omniweb.gsfc.nasa.gov/ ). Funding Information: This work was supported by the Academy of Finland project 314664 and 314670. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium derived data products (https://ampere.jhuapl.edu/). For the ground magnetometer data and substorm onset list, we gratefully thank the SuperMAG collaboration and all organizations involved (https://supermag.jhuapl.edu/info/). For the geomagnetic indices, solar wind and interplanetary magnetic field data, we gratefully thank NASA/GSFC's Space Physics Data Facility's OMNIWeb (https://omniweb.gsfc.nasa.gov/). Publisher Copyright: © 2022. The Authors.Peer reviewe

    Field-Aligned and Ionospheric Currents by AMPERE and SuperMAG During HSS/SIR-Driven Storms

    Get PDF
    This study considers 28 geomagnetic storms with Dst ≤−50\leq-50 nT driven by high-speed streams (HSSs) and associated stream interaction regions (SIRs) during 2010-2017. Their impact on ionospheric horizontal and field-aligned currents (FACs) have been investigated using superposed epoch analysis of SuperMAG and AMPERE data, respectively. The zero epoch (t0t_0) was set to the onset of the storm main phase. Storms begin in the SIR with enhanced solar wind density and compressed southward oriented magnetic field. The integrated FAC and equivalent currents maximise 40 and 58 min after t0t_0, respectively, followed by a small peak in the middle of the main phase (t0t_0+4h), and a slightly larger peak just before the Dst minimum (t0t_0+5.3h). The currents are strongly driven by the solar wind, and the correlation between the Akasofu ε\varepsilon and integrated FAC is 0.900.90. The number of substorm onsets maximises near t0t_0. The storms were also separated into two groups based on the solar wind dynamic pressure p_dyn in the vicinity of the SIR. High p_dyn storms reach solar wind velocity maxima earlier and have shorter lead times from the HSS arrival to storm onset compared with low p_dyn events. The high p_dyn events also have sudden storm commencements, stronger solar wind driving and ionospheric response at t0t_0, and are primarily responsible for the first peak in the currents after t0t_0. After t0+2t_0+2 days, the currents and number of substorm onsets become higher for low compared with high p_dyn events, which may be related to higher solar wind speed.publishedVersio
    • …
    corecore