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Abstract. We present a new scheme for solving the iono-
spheric boundary conditions required in magnetospheric
MHD simulations. In contrast to the electrostatic ionospheric
solvers currently in use, the new solver takes ionospheric
induction into account by solving Faraday’s law simultane-
ously with Ohm’s law and current continuity. From the view-
point of an MHD simulation, the new inductive solver is
similar to the electrostatic solvers, as the same input data is
used (field-aligned current [FAC] and ionospheric conduc-
tances) and similar output is produced (ionospheric electric
field). The inductive solver is tested using realistic, databased
models of an omega-band and westward traveling surge. Al-
though the tests were performed with local models and MHD
simulations require a global ionospheric solution, we may
nevertheless conclude that the new solution scheme is feasi-
ble also in practice. In the test cases the difference between
static and electrodynamic solutions is up to∼10 V km−1 in
certain locations, or up to 20-40% of the total electric field.
This is in agreement with previous estimates. It should also
be noted that if FAC is replaced by the ground magnetic
field (or ionospheric equivalent current) in the input data set,
exactly the same formalism can be used to construct an in-
ductive version of the KRM method originally developed by
Kamide et al.(1981).
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1 Introduction

Magnetospheric magnetohydrodynamic (MHD) simulations
are used extensively in studying the near-earth plasma en-
vironment, its inner dynamics and coupling with the solar
wind. In addition to the magnetospheric (ideal) MHD model,
simulations also require a separate ionospheric solver that
provides inner boundary conditions for the magnetospheric
solution.

It would appear that at the present time global MHD sim-
ulations use electrostatic solvers in the ionosphere (e.g.Jan-
hunen, 1996; Raeder et al., 1998; Tanaka, 2000; Lyon et al.,
2004, and references therein), meaning that inductive effects
are ignored and the ionospheric electric field can be repre-
sented by a potential.Janhunen(1998) considered a type
of electrodynamic solver where the ionospheric electric field
may contain a non-potential component. However, even in
this approach Faraday’s law is not solved in the ionosphere,
for the electric field is obtained by a direct mapping from the
magnetosphere.

Coupling between magnetosphere and ionosphere can also
be described in terms of Alfv́en wave propagation and re-
flection at the ionospheric boundary. For exampleLysak and
Song(2001, 2006) andWaters and Sciffer(2008) have de-
veloped numerical models for solving linearized MHD wave
equations in the inner magnetosphere, without resorting to
separate ionospheric solvers. On the other hand the lin-
earized wave models require pre-defined background mag-
netic field and density data. RecentlyYoshikawa et al.(2010)
have developed an Alfv́enic magnetosphere-ionosphere cou-
pling scheme, where the ionospheric boundary condition
needed in MHD simulations is derived from reflection prop-
erties of shear Alfv́en waves. However, such coupling
schemes have not yet been implemented in present day sim-
ulations.
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98 H. Vanham̈aki: Inductive ionospheric solver

The electrostatic approximation is usually valid in the
ionosphere, because typical current systems evolve rather
slowly, in time scales of several minutes. Nevertheless, it has
been shown that inductive effects may play an important role
in the reflection of Alfv́en waves at the ionospheric boundary
(e.g.Yoshikawa and Itonaga, 1996; Buchert, 1998; Lysak and
Song, 2001). More recentlyVanham̈aki et al.(2007) showed
that in very dynamical situations, like in a westward traveling
surge, induction may contribute up to 30% of the total elec-
tric field in some limited areas.Takeda(2008) concluded that
induction may affect rapidly changing, global current sys-
tems, such as the preliminary impulse of storm commence-
ment. These results suggest that ionospheric induction may
have a non-negligible role in magnetosphere-ionosphere cou-
pling, especially during active periods such as substorm on-
sets.

In this article we present a scheme for an inductive iono-
spheric solver, where ionospheric Ohm’s law, current conti-
nuity and Faraday’s law are solved simultaneously and self-
consistently. From the viewpoint of an MHD simulation, the
inductive solver is quite similar to the existing electrostatic
solvers, as the same input data is used (field-aligned current
[FAC] and ionospheric conductances) and similar output is
produced (ionospheric electric field). However, the structure
of the calculated electric field may be different, depending
on the temporal evolution of the input data.

We begin by reviewing the electrostatic ionospheric solver
presently used in MHD simulations in Sect.2, together with
some proposed alternative schemes. The theory behind the
new inductive solver is discussed in Sect.3, while in Sect.4
we present some simple applications illustrating the feasibil-
ity of the method. Actual implementation of the new induc-
tive solver in a magnetospheric MHD simulation is beyond
the scope of the present theoretical study. Details of the so-
lution algorithm are given in an Appendix.

2 Background

2.1 Electrostatic solver

The spatial grid resolution and time step in MHD simula-
tions are limited by the Alfv́en speed (VA = |B|/

√
µ0ρ) and

Courant stability condition, which states that for a stable so-
lution the time step must be smaller than the wave travel time
across each grid cell. For this reason magnetospheric MHD
simulations have an inner artificial boundary (AB), usually
around 2–3RE, as closer to Earth the increasing Alfvén speed
would make full MHD solution computationally impractical
(however, the linearized MHD wave equation can be solved
all the way down to the ionosphere, see e.g.Lysak and Song,
2006; Waters and Sciffer, 2008). Instead, the magnetospheric
simulation is coupled to an ionospheric solver by mapping
FAC and electric field along magnetic field lines. Here we

give a brief summary of the process, further details are given
e.g. byJanhunen(1998).

The FAC distribution is calculated at the AB as

j‖ = ê‖ ·∇ ×B/µ0, (1)

where ê‖ is the unit vector in the magnetic field direction.
When mapped to the ionospherej‖ scales with the flux tube
cross section. Ionospheric conductivities are calculated us-
ing a pre-defined model of solar UV radiation and electron
precipitation data estimated from the MHD variables at the
AB (see e.g.Raeder et al., 1998; Janhunen, 1996).

The ionosphere is treated as a thin spherical shell, with
height-integrated Hall, Pedersen and field-aligned conduc-
tances6H,6P and60, respectively. The ionospheric Ohm’s
law is

J =6 ·E. (2)

HereJ denotes the height-integrated horizontal current and
we ignore the parallel component of the electric field. The
ionospheric conductance tensor is (e.g.Brekke, 1997, chap-
ter 7.12)

6=
1

C

(
606P −606HsinI

606HsinI C6P+62
Hcos2I

)
. (3)

whereI is the inclination angle of the magnetic field (+90◦

at the northern magnetic pole,−90◦ at the southern pole) and
C=60sin2I+6Pcos2I .

Current continuity means that

∇h ·J = j‖ sinI, (4)

where the subscript “h” indicates that horizontal derivatives
are calculated. Together with Ohm’s law this gives us an el-
liptic differential equation for the ionospheric potential elec-
tric field E = −∇hφ,

−∇h ·(6 ·∇hφ)= j‖ sinI. (5)

The electric potentialφ is mapped along magnetic field lines
to the AB, where it is used as a boundary condition for the
plasma velocity,

V = E×B/|B|
2. (6)

If an estimate of the potential drop between the magneto-
sphere and ionosphere is made, it can be added toφ.

2.2 Solution based on the electric field

In principle it is possible to reverse the process described
above: instead of FAC we calculate the electric field at the
AB and map that to the ionosphere. Then it is a simple matter
to solve FAC from ionospheric Ohm’s law and map it back
to the AB, where it is used to update the magnetic field of
the MHD simulation. This kind of solver was considered by
Janhunen(1998), who called it an electromagnetic solver, as
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the electric field mapped from the MHD simulation generally
has a rotational part.

However, in this approach Faraday’s law is not solved in
the ionosphere and the rotational part ofE is probably in-
consistent with the time derivate of the magnetic field. So for
the purposes of this study the solver suggested byJanhunen
(1998) can be considered as electrostatic.

Janhunen(1998) identified two difficulties in this elec-
tric field-based solver: (1) mapping non-potential electric
fields between magnetosphere and ionosphere is fundamen-
tally ambiguous and (2) it is difficult to change the FAC at
the AB, as it affects the magnetic field inside the simula-
tion, not only at the AB.Janhunen(1998) presented possi-
ble ways to overcome these difficulties, but nevertheless this
approach has not been implemented in existing MHD sim-
ulations. The first problem is relevant also in the inductive
ionospheric solver presented in Sect.3 and is discussed there
in more detail.

2.3 M-I coupling with Alfv én waves

In the above magnetosphere-ionosphere coupling schemes it
is assumed that the electric potential and FAC are instan-
taneously mapped along (dipolar) magnetic field lines be-
tween the AB and ionosphere. In a more realistic description
changes in the M-I system are transmitted as hydromagnetic
Alfv én waves.

The Alfvén velocity varies considerably along the mag-
netic field line, from a few hundred km s−1 in the ionosphere
up to 105 km s−1 at 1–2RE altitude (e.g.Paschmann et al.,
2002, Fig. 3.12). Consequently, the two-way travel time be-
tween AB and ionosphere could be order of 10 s. This is
longer than typical time steps of MHD simulations (espe-
cially if sub-cycling is used) and should therefore be included
in the ionospheric solver. However, this propagation delay is
ignored in the presently used electrostatic solvers discussed
above, as well as in the new inductive solver presented in
Sect.3.

Reflection of Alfv́en waves from non-uniformly conduct-
ing ionosphere with vertical background magnetic field was
treated byGlassmeier(1984). He used the electrostatic ap-
proximation, where only shear waves are involved. If induc-
tive effects are included, there is a mode conversion between
shear and compressional Alfvén waves (e.g.Yoshikawa and
Itonaga, 1996; Buchert, 1998; Lysak and Song, 2001). The
mode conversion also depends on the inclination of the back-
ground magnetic field (Sciffer et al., 2004). More recently
Lysak and Song(2006) andWaters and Sciffer(2008) have
developed linearized MHD models of Alfvén wave propaga-
tion and reflection in the near Earth space.

The prospect of using an inner magnetosphere Alfvén
wave model as an ionospheric solver in a global MHD sim-
ulation has been discussed byYoshikawa et al.(2010). They
developed a scheme for extracting the incident wave pat-
tern from the MHD fields and updating the boundary con-

dition at the AB using the reflected waves.Yoshikawa et
al. (2010) considered only an electrostatic ionosphere (shear
wave reflection) with vertical background magnetic field and
ignored the propagation delay of Alfvén waves, but it might
be possible to use a similar approach to connect e.g. the 3-
dimensional, fully electrodynamic Alfv́en wave model devel-
oped byLysak and Song(2006) to a global MHD simulation.

In the ionospheric reflection process both the electric field
and FAC are modified, in contrast to the solvers discussed in
Sects.2.1and2.2, where eitherj‖ or E remains fixed. As the
FAC is changed in the ionosphere, the problem of magnetic
boundary condition at the AB, discussed in Sect.2.2, applies
also to Alfvénic solvers.

3 Inductive (electrodynamic) solver

In this section we present a new inductive solver for mag-
netospheric MHD simulations. The new solver is very sim-
ilar to the presently used electrostatic solvers discussed in
Sect.2.1, except that inductive effects are included in the
ionospheric solution. While this means that the mapping
between AB and ionosphere is still handled in a simplified
manner, ignoring the wave propagation aspect of the cou-
pling, it should also make the new solver more straightfor-
ward to implement in magnetospheric MHD simulations than
the Alfvénic solvers discussed byYoshikawa et al.(2010)
and in the previous section.

The new solver uses the same input data as the electrostatic
solver,j‖ calculated from the MHD solution and ionospheric
conductance estimates. However in this case the electric field
has a non-potential part, giving us one additional degree of
freedom. We can write the electric field as

E = −∇φ+ êr ×∇ψ, (7)

whereêr is a unit vector in radial direction.
As we have one more unknown function than in the elec-

trostatic case, we need one more equation. This is obtained
by combining Faraday’s and Ampere’s laws,

∇ ×E = −
∂B

∂t
, (8)

∇ ×B =µ0j . (9)

Here j is the 3-D volume current,j = δ(r −RI)J + j‖ê‖,
whereRI is the radius of the ionospheric shell.

Equations (2), (4), (8), (9) form a closed system that can be
solved for the electric field, once the FAC and conductances
are specified. This system is somewhat more complicated
than the electrostatic case, as it involves either the second
derivative of the electric field or integration of the magnetic
field. One possible solution algorithm is developed in this
study.
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h’=0 (pole) h’=0 (pole)

Curl-free elementary system Divergence-free elementary system

Fig. 1. Curlf-free (left) and divergence-free (right) Spherical Ele-
mentary Current Systems (SECS). Figure provided by O. Amm.

3.1 SECS-based solution algorithm

Instead of the potentialsφ andψ used in Eq. (7), we may
equally well represent the electric field in terms of its diver-
gence and curl (we only need the radial component of curl, as
we use the thin shell approximation). The Spherical Elemen-
tary Current Systems (SECS) introduced byAmm (1997) of-
fer a set of convenient basis functions for this kind of repre-
sentation.

SECS are illustrated in Fig.1. Each curl-free (CF) SECS
represents a uniform source on a sphere plus an opposite
delta-function source at the pole, while a divergence-free
(DF) SECS has similar distribution of rotation. Mathemat-
ically speaking they are Green’s functions of the∇· and
∇× operators. Written in a spherical coordinate system
(r ′,θ ′,φ′), with unit vectors(êr ′ ,êθ ′ ,êφ′), having its pole at
the center of the elementary systems, the vector fields are

J el,cf(r ′,θ ′)=
I cf
0

4πRI
cot

(
θ ′

2

)
êθ ′ (10)

J el,df(r ′,θ ′)=
Idf
0

4πRI
cot

(
θ ′

2

)
êφ′ . (11)

Here I cf
0 and I cf

0 are the scaling factors of the elementary
systems. Together CF and DF SECS form a complete set
of basis functions for representing any 2-D vector field on a
sphere.

Let us define two grids in the ionospheric shell:rel
u =

(RI,θ
el
u ,φ

el
u ), where indexu= 1...U give the points where

the centers of the DF and CF SECS are placed, whilerv =

(RI,θv,φv), v= 1...V are the points where we want to cal-
culate the vector fieldsE andJ . For simplicity we assume
that the div-free and curl-free SECS are placed at the same
grid. In principle also the grid pointsrel

u andrv may coin-
cide, but often it is numerically beneficial to introduce two
separate, interleaved grids.

With elementary systems we can calculate the horizontal
current from its curl and divergence, as

J = M1 ·divJ+M2 ·curlJ (12)

HereJ is a vector of length 2V that contains theθ - andφ-
components ofJ at grid pointsrv,

J =
[
Jθ (r1), Jφ(r1), Jθ (r2) ... Jφ(rV )

]T
. (13)

TheU -dimensional vectorsdivJ andcurlJ contain the di-
vergence and curl ofJ at therel

u grid points,

divJ =

[
(∇ ·J )|r=rel

1
, (∇ ·J )|r=rel

2
... (∇ ·J )|r=rel

U

]T
, (14)

curlJ=

[
(∇ ×J )r|r=rel

1
, (∇ ×J )r|r=rel

2
... (∇ ×J )r|r=rel

U

]T
.

(15)

Here∇ ·J and(∇ ×J )r should be interpreted as the average
values over the grid cells. The components of vectorsdivJ
andcurlJ (multiplied by the area of the grid cell) correspond
directly to the scaling factors of the CF and DF SECS in
Eqs. (10) and (11), respectively. Components of the trans-
fer matricesM1,2 can be calculated using Eqs. (10) and (11),
once therel

u andrv grids are specified. Details of forming
the matrices are given in the Appendix.

In this article vectors likeJ anddivJ containing data from
all grid points are written in fraktur font, in order to distin-
guish them from ordinary vectors, such asr andJ .

The divergent part of the current (divJ) is known from the
input FAC, while the rotational part (curlJ) is to be solved.
We can write Ohm’s law as

E = R ·J , (16)

where the resistance tensorR is obtained by inverting the
conductance tensor in Eq. (3),

R =
1

60(6
2
P+62

H)

(
C6P+62

Hcos2I 606HsinI
−606HsinI 606P

)
.

The curl and divergence of the inverted Ohm’s law give us
two relations between the electric field and current. In this
case we need only the curl ofE, which can be written in
terms of elementary systems as

curlE= L1 ·divJ+L2 ·curlJ. (17)

VectorcurlE contains the curl of the electric field at the grid
pointsrel

u and is completely analogous to the vectorcurlJ
defined in Eq. (15). MatricesL1,2 can be constructed using
the previously defined matricesM1,2 and the inverted Ohm’s
law, see the Appendix for details.

We still need to write Faraday’s law in terms of the SECS
representation. It is simply

curlE= −
∂Br

∂t
, (18)
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where the vectorBr contains the radial magnetic field at the
grid pointsru,

Br= [Br(r1), Br(r2) ... Br(rU )]
T . (19)

The vectorBr can be written in terms of the current as

Br= N1 ·divJ+N2 ·curlJ. (20)

MatricesN1,2 can be obtained using the expressions for the
magnetic fields of individual elementary systems, as outlined
in the Appendix. In the case of vertical background magnetic
field N1 = 0.

Now we can combine Eqs. (17), (18) and (20) as

L1 ·divJ+L2 ·curlJ= −
∂ (N1 ·divJ+N2 ·curlJ)

∂t
. (21)

As the divergent part of the ionospheric current,divJ, is as-
sumed to be known, the unknown rotational partcurlJ can
be obtained by integrating this equation step-by-step in time.
If we set the time-derivative in Eq. (21) to zero, we recover
the electrostatic solver discussed in Sect.2.1. After curlJ
has been solved, the total current is obtained from Eq. (12)
and the electric field from Eq. (16).

3.2 Mapping rotational E to the magnetosphere

As mentioned in Sect.2.2, the rotational induced part of the
electric field does introduce some ambiguity to the mapping
between ionosphere and magnetosphere, so the mapping pro-
cedure used in electrostatic solvers has to be modified.

Janhunen(1998) suggested a local potential mapping: In
the vicinity of each ionospheric grid pointrv a local potential
is defined as

8v(r)= −E ·(r −rv). (22)

This potential is then mapped to the AB along a few adjacent
field lines, so that the electric field at the magnetic conjugate
point of rv can be evaluated. This procedure is repeated for
each ionospheric grid point separately.

Another possibility is to simply ignore the rotational part
of E: Define a global ionospheric potential by solving Pois-
son’s equation

∇
28= −∇ ·E, (23)

and map it to the AB as in the electrostatic case. It should be
noted that usually the potential8 defined here is not equal to
φ obtained by solving Eq. (5). The physical justification for
ignoring the rotational part ofE may be obtained by consid-
ering the reflection of Alfv́en waves at the ionosphere. The
potential part ofE is associated with shear waves, whereas
the rotational part is connected to compressional waves (ex-
actly true only for verticalB, see e.g.Yoshikawa and Iton-
aga, 1996). Shear waves propagate only along the magnetic
field, so the potential field is mapped directly to the AB. Most
compressional waves generated in the reflection process are

evanescent with exponentially decaying rotationalE. At
high frequencies and for very large structures compressional
waves can propagate in all directions, so in that case the ro-
tationalE experiences geometrical attenuation compared to
the electrostaticE. Therefore the rotationalE at the AB can
be neglected.

It may be necessary to determine the optimal mapping pro-
cedure trial-and-error tests, when coupling the proposed in-
ductive solver to an magnetospheric MHD simulation, but
that is beyond the scope of the present theoretical study.

3.3 Inductive KRM algorithm

In the above derivation we assumed that ionospheric conduc-
tances and FAC distribution (that is, vectordivJ) are given
as the input data. However, it is worth noting that Eq. (21)
can also be solved using the rotational part of the current
(curlJ) as input. This gives us an inductive version of the
KRM method originally developed byKamide et al.(1981).
At high magnetic latitudes the rotational current is equal to
the ionospheric equivalent current obtainable from ground
magnetic measurements (see e.g.Untiedt and Baumjohann,
1993).

RecentlyVanham̈aki and Amm(2007) developed a local
version of the KRM method, where Cartesian elementary
current systems (CECS, seeAmm, 1997) formed the basis
of the mathematical treatment. Apart from the different basis
functions and somewhat different notation, the theory pre-
sented here is a generalization of the local KRM method. If
we set the time derivative in Eq. (21) to zero and solve the
system for the divergent currentdivJ, we recover the solu-
tion presented byVanham̈aki and Amm(2007).

4 Application examples

Here we apply the solution algorithm developed in Sect.3.1
to some realistic ionospheric current systems, including an
omega-band model constructed byAmm (1996), using ob-
servational data obtained at northern Scandinavia by the
Scandinavian Magnetometer Array, EISCAT radar and mag-
netometer cross, and STARE radar.

Our intent is to demonstrate that the theory developed in
Sect.3.1 can be used in practice. For this purpose it is suf-
ficient to use mesoscale (order of 1000 km) models of repre-
sentative current systems, instead of coupling the ionospheric
solver to a global MHD simulation. AsVanham̈aki et al.
(2007) has studied the ionospheric induction using the same
omega-band models as employed here, we can use the previ-
ous results as a reference. However, it should be noted that
Vanham̈aki et al.(2007) used the potential part of the elec-
tric field as input data, whereas in the present study the FAC
distribution is fixed. This difference will, in general, lead to
different solutions, but the overall structure and magnitude of
the induced electric field should be similar.

www.ann-geophys.net/29/97/2011/ Ann. Geophys., 29, 97–108, 2011
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Fig. 2. Model of an omega-band constructed byAmm (1996). Lefthand panels: Pedersen conductance6P, Hall conductance6H and
field-aligned current (FAC). Righthand panels: Electric fieldE and horizontal currentJ .

It should be mentioned that in order to simplify these first
calculations, we used Cartesian instead of spherical geom-
etry, as the model areas are less than 1500 km across. We
also neglected the tilt of the magnetic field lines. However,
the theory presented in Sect.3.1and in the Appendix include
also these effects, which are important in a global solution.

4.1 Omega-band

The omega-band model is illustrated in Fig.2. Lefthand pan-
els show the input variables6P,6H and FAC used in the in-
ductive solver. The electric and current fields obtained from
the solver should be compared against the model variables
shown in the righthand panels of Fig.2.

The model shown in Fig.2 is static, an instantaneous snap-
shot of the omega-band. We create temporal variations by
moving the static model eastward at 2 km s−1, which is a high
but still realistic speed (Paschmann et al., 2002, chapter 6).

Figure 3 shows results from the inductive solver. Left-
hand panels shows the total electric field (sum of potential
and rotational parts) together with associated horizontal and
field-aligned currents. FAC is one of the input quantities in
the inductive solver, so the result shown in Fig.3 is identi-

cal to the input model illustrated in Fig.3, apart from small
numerical inaccuracies.

The electric field and current obtained from the inductive
solver are in good qualitative agreement with the original
model, although their magnitude is too small by almost fac-
tor of 2. It is clear that the amount of electrojet type current
flowing through the analysis area in East-West direction is
severely underestimated, especially in the southern (bottom)
side of the model. This behavior is even more evident in the
1-dimensional electrojet model discussed below. As for the
electric field, largest errors occur in the low-conductance re-
gions around the “�”, where errors inJ are magnified in the
inverted Ohm’s law.

The righthand panels of Fig.3 show the rotational (in-
duced) part of the electric field solution, as well as the
associated horizontal current and FAC. The induced elec-
tric field is strongest in the highly conducting “tongue”
of the omega-band, where also the temporal changes are
largest. The magnitudes ofEind andJ ind are rather small,
only about 0.8 V km−1 and 57 A km−1, respectively. How-
ever, asEind forms a locally closed current system in the
high-conductance region, the associated FACind is quite
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Fig. 3. Results of the electrodynamic solver for the omega-band model. Lefthand panels: Total electric fieldEdyn, associated horizontal
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and FACind.
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Fig. 4. Induced rotational electric field in the omega-band model
calculated with the method ofVanham̈aki et al.(2007).

significant, contributing up to 10% of the total FAC in the
tongue.

The results shown in Fig.3 should be compared against
calculations byVanham̈aki et al. (2007), who used the po-
tential part of the electric field as an input variable, instead

of FAC used here. Figure4 showsEind of the omega-band
calculated byVanham̈aki et al. (2007). The result is very
similar, almost identical to the one shown in the upper right
panel of Fig.3, apart from a factor∼2 difference in magni-
tudes. Similar magnitude difference is observed also in the
WTS model (results not shown). The probable explanation
is the different input data: In the present method the total
FAC distribution is fixed, so the presence ofEind changes
also the potential electric field. Thus the induction effect is
distributed by 2 degrees of freedom, the potential and rota-
tional parts ofE. In the calculation presented byVanham̈aki
et al.(2007) the potential electric field was fixed, so only the
rotationalE was affected by induction.

The total induction effect on the electric field is illustrated
in Fig. 5. The upper panel shows the difference between
the inductive (or electrodynamic) and static solutions,Edyn

andEstat, respectively, while the lower panel shows the rel-
ative effect. The static solution is obtained by neglecting
the time derivative in Eq. (21). As mentioned above, the
largest errors in the electric field solution are expected in
low-conductance regions. Therefore, only those areas where
|Estat

|>5 V km−1 and6H>5 S are shown.
Figure5 demonstrates that even though the rotational part

of the electric field (Eind in Fig. 3) is quite small, induction
may have much larger effect on the total electric field, up to
11 V km−1 or 20% in an omega-band.
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Fig. 5. Results for the omega-band model. Upper panel shows the
difference between the electric fields obtained from static (Estat)
and electrodynamic (Edyn) solvers. Lower panel show the percent-
age difference in electric field magnitude. Only those areas where
|Estat

|>5 V km−1 and6H>5 S are shown.

We made similar calculation also with a WTS model (re-
sults not shown) employed byVanham̈aki et al.(2007). In
this case time series was created by moving the model at
10 km s−1 westward, which is again in the upper range of
realistic speeds. Here we present only a brief summary of
the results.

The Eind in a WTS produced by the inductive solver is
very similar in structure to the results obtained earlier by
Vanham̈aki et al. (2007). The difference in magnitude is
about factor of 2, same as in the omega-band case.

The electric field and horizontal current obtained as out-
put from the inductive solver of Sect.3.1 are in reasonable
qualitative agreement with the input model and forJ even
the quantitative agreement is fairly good. The electric field
is reproduced well in high-conductance areas, but in regions
of low conductivity the solution is quite unreliable, probably
due to the large contrast between high and low conductance
regions (factor of 150 variations in6H, compared to 30 in
the omega-band model) and boundary effects caused by the
limited model area.

In absolute terms the induction effect is similar to the
omega-band, close to 10 V km−1 in many places. The rel-

ative change is 40–60% in many places, although in areas
where|E| is small values exceeding 100% are observed.

4.2 1-dimensional electrojet

In addition to the realistic, data-based models described
above, we also tested the solver with a simple 1-dimensional
electrojet. In this case the 1-D electrojet had a constant elec-
tric field and Gaussian conductance profile in the x-direction
and no variations in the y-direction. Temporal variations
were not included.

This simple test case is worth mentioning because the
SECS-based solution algorithm developed in Sect.3.1 fails
almost completely. The main reason for the failure is incor-
rect boundary condition. In the SECS-based approach we
implicitly assume that divergence and rotation ofE andJ

vanish outside the analysis area. In a 1-D electrojet it is pos-
sible to add a Cowling channel (Bostr̈om, 1964) to the sys-
tem, without affecting the FAC used as input in the inductive
solver. The only way to include the Cowling-type part to the
solution is to impose explicit boundary conditions. However,
this problem affects only regional analysis, as in global scales
the solution is unique.

The SECS are intrinsically 2-dimensional, so 1-D struc-
tures and open current systems, where large part of the cur-
rent flows through the analysis area, are difficult to model
with them. This may explain part of the error in the omega-
band results. Also this problem is expected to ease in global
analysis, where all current systems are, by definition, closed.

5 Discussion and conclusions

The purpose of this article is to present a new inductive
(or electrodynamic) ionospheric solver for magnetospheric
MHD simulations. We use ionospheric conductances and
FAC inferred from the the MHD simulation as the input data,
similar to existing electrostatic solvers. In the new solver
the internal induction in the ionosphere is taken into account
by solving Faraday’ law simultaneously with Ohm’s law and
current continuity.

The SECS-based solution algorithm presented in Sect.3.1
is a modification of the inductive solver presented byVan-
ham̈aki et al. (2006) and employed byVanham̈aki et al.
(2007). The main difference is the type of input data used in
the solver:Vanham̈aki et al.(2006) assumed that the poten-
tial part of the ionospheric electric field is available, whereas
here we use the FAC provided by a magnetospheric MHD
simulation. Also the local elementary system -based KRM
method developed byVanham̈aki and Amm(2007) is closely
related to the solver presented in this article. In fact, as
discussed in Sect.3.3, the theory presented here includes also
the KRM solution.

It is interesting to note that recentlyTakeda (2008)
studied ionospheric induction using same input data and

Ann. Geophys., 29, 97–108, 2011 www.ann-geophys.net/29/97/2011/



H. Vanham̈aki: Inductive ionospheric solver 105

also somewhat similar numerical approach as developed
here. Takeda(2008) solved a differential equation for the
divergence-free current potentialψ defined in Eq. (7), but
presented the curl-free part of the current as a sum of simple
vector systems equivalent to the CF SECS used here.

In Sect. 4 we present some preliminary results, that
demonstrate the practical applicability of the new induc-
tive solver. The results indicate that although the rotational
part of the electric field is always local and rather small,
about 1 V km−1 at most, it is usually concentrated in areas
of high conductivity and therefore drives significant FACs.
As the total FAC distribution is fixed, also the potential part
of the electric field is indirectly modified by induction. In
the omega-band and WTS models (results not shown) the
difference in static and electrodynamic solutions may be
∼10 V km−1, or up to 20–40% of the total electric field.

Large inductive effects take place in the most dynami-
cal ionospheric situations, such as during substorm onsets,
which are important in magnetosphere-ionosphere coupling.
We may expect that the difference between simulation runs
using electrostatic and electrodynamic ionospheric solvers
solutions increases with time, as the slightly different iono-
spheric solution affect the temporal evolution of the MHD
simulation.

As discussed in Sect.4, the output of the new solver is
usually in good qualitative agreement with the correctE

andJ of the input model, but some errors are also present.
Largest errors inJ are probably related to the boundary con-
ditions needed in regional analysis, so results of global anal-
ysis should be more reliable.

The electric field produced by the inductive solver includes
a rotational part, which can’t be mapped to the magneto-
sphere as simply as a potential field, as discussed in Sect.3.2.
One way to overcome the mapping problem would be to
describe the magnetosphere-ionosphere coupling in terms
of Alfv én wave propagation and reflection, like the model
proposed byLysak and Song(2006) discussed in Sect.2.3.
However, an Alfv́enic model would be more complicated to
couple to an MHD simulation than the inductive solver pre-
sented here, although recentlyYoshikawa et al.(2010) have
presented a possible coupling scheme.

The results presented in Sect.4 indicate that the rotational
part itself is rather small, but inductive change of the poten-
tial field is much larger. If this is true also in a global solution,
and is not related to the problem of boundary conditions in
regional analysis, then it may be feasible to simply ignore the
rotational part of the electric field and map only the potential
part to the MHD simulation.

In the present theoretical study we settled for present-
ing the theoretical basis of the new ionospheric solver and
demonstrating its usability. Actual coupling of the new in-
ductive solver to an magnetospheric MHD simulation is a
topic for future studies.

Appendix A

In this Appendix we describe how to form the matricesM1,2,
L1,2 and N1,2 defined in Eqs. (12), (17) and (20), respec-
tively.

A1 Matrices M1,2

According to Eqs. (12)–(15) componentM(2v−1,u)
1 of the ma-

trix M1 gives that part ofJθ at locationrv that is contributed
by a CF SECS located atrel

u . Similarly, componentM(2v,u)
1

gives curl-free part ofJφ at rv. Geometry of the situation is
illustrated in Fig.A1. The vector field of each individual CF
SECS is given in Eq. (10), where the scaling factorV cf cor-
responds to the components of vectordivJ. The remaining
task is to convert the angleθ ′ and unit vector̂eφ′ defined in
a SECS-centered coordinate system to the geographical sys-
tem.

It is a straightforward exercise in spherical geometry to
show that

M
(2v−1,u)
1 =

Au

4πRI

cosθel
u −cosθv cosθ ′

sinθv (1−cosθ ′)
, (A1)

M
(2v,u)
1 = −

Au

4πRI

sinθel
u sin(φel

u −φv)

1−cosθ ′
, (A2)

whereAu is the area of the grid cell centered atrel
u and

cosθ ′
= cosθv cosθel

u +sinθv sinθel
u cos(φel

u −φv). (A3)

Components of the matrixM2 are obtained in a similar fash-
ion from the DF SECS defined in Eq. (10). The result is
simply

M
(2v−1,u)
2 = −M

(2v,u)
1 , (A4)

M
(2v,u)
2 =M

(2v−1,u)
1 . (A5)

A2 Matrices L1,2

MatricesL1,2 are defined in Eq. (17). ComponentL(v,u)1 of
the matrixL1 gives curl of the electric field at pointrv caused
by the CF SECS atrel

u , while matrixL2 is associated with the
divergence-free elementary systems. It is straightforward to
evaluate the curl of Eq. (16),

(∇ ×E)r = −∇Rθφ ·J −Rθφ∇ ·J +(∇Rφφ×J )r +

+Rφφ(∇ ×J )r −
1

RI sinθ

∂ (R−Jθ )

∂φ
, (A6)

where components of the resistance tensor defined in
Eq. (16) are abbreviated as

R =

(
Rθθ Rθφ

−Rθφ Rφφ

)
, (A7)
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Fig. A1. Geometry of calculating components of matricesM1,2. The elementary system is located at(θel,φel) and the vector field is
evaluated at(θ,φ). θ ′ is the latitude of the point(θ,φ) in the coordinate system centered at the elementary system.

Fig. A2. Curl-free elementary system with tilted FAC at the pole. AfterFukushima(1976).

and the difference of the diagonal components is

R− =Rθθ −Rφφ =

(
1

60
−

6P

62
P+62

H

)
cosI. (A8)

The divergence and curl of the DF and CF elementary sys-
tems defined in Eqs. (10), (11) are

∇ ·J el,cf
= (∇ ×J el,df)r = I0

(
δ2(rel

−r)−
1

4πR2
I

)
, (A9)

(∇ ×J el,cf)r = ∇ ·J el,df
= 0. (A10)

Components ofL1,2 matrices can be deduced from Eqs. (12),
(17), (A6) and (A9)–(A10) as

L
(v,u)
1 = −M

(2v−1,u)
1 (Rθφ;θ+Rφφ;φ)−M

(2v,u)
1 (Rθφ;φ−Rφφ;θ )

−
∂ (R−M

(2v−1,u)
1 )

RI sinθv∂φ
−Rθφ

(
δu,v−

Au

4πR2
I

)
, (A11)

L
(v,u)
2 = −M

(2v−1,u)
2 (Rθφ;θ+Rφφ;φ)−M

(2v,u)
2 (Rθφ;φ−Rφφ;θ )

−
∂ (R−M

(2v−1,u)
2 )

RI sinθv∂φ
+Rφφ

(
δu,v−

Au

4πR2
I

)
. (A12)

In the above formulas gradients are denoted as

Rθφ;θ :=
1

RI

∂Rθφ

∂ θ
, (A13)

and so on. Functionδu,v is defined so that

δu,v =

{
1 if rv ∈ cell u
0 otherwise

, (A14)

andAu is the area of the grid cell centered atrel
u .

A3 Matrices N1,2

ComponentN (v,u)
1 of the matrixN1 gives the radial magnetic

field atrv caused by a CF SECS atrel
u . Matrix N2 givesBr
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associated with the DF SECS. When calculating the mag-
netic field of a CF SECS, the FAC associated with the diver-
gence of the horizontal current has to be included. Accord-
ing to Eq. (A9), there is a delta-function FAC at the pole of
the system and uniform, oppositely directed FAC elsewhere.
We model the polar FAC as a tilted semi-infinite line current,
while the uniform FAC is assumed to flow radially. The ge-
ometry of the uniform FAC need not be realistic, because we
expect that in global scales the inward and outward flowing
line currents will balance each other, and consequently the
uniform FACs of the CF SECS will sum to zero.

Figure A2 illustrates the FAC distribution of a curl-free
SECS and the way it can be decomposed into a purely ra-
dial FAC system plus a line current wedge. According to
Fukushima’s theorem the radial magnetic field of current sys-
tem illustrated in the middle panel is zero (Fukushima, 1976).
It is easy to show that the vertical line current of the current
wedge also hasBr = 0. The remaining task is to calculate the
radial magnetic field of the tilted semi-infinite line current.

Let us orient the primed, SECS centered coordinate system
so that the line current flows along the zero meridian. The
point (θv,φv) where we want to calculateBr is (θ ′,φ′) in the
primed system (see Fig.A1). cosθ ′ is given in Eq. (A3) and

φ′
=A+D+180◦, (A15)

whereD is the declination angle of the magnetic field (posi-
tive eastward). According to spherical trigonometry

sinA=
sinθv sin(φel

u −φv)

sinθ ′
, (A16)

cosA=
cosθv−cosθ ′ cosθel

u

sinθ ′ sinθel
u

. (A17)

The Biot-Savart law givesBr as

Br =
µ0I

el,cf

4π

∫
line

(dl×V )r

|V |3
, (A18)

whereIel,cf is the scaling factor of the CF SECS,dl is di-
rected along the line current andV is a vector fromr ′

=

(RI,θ
′,φ′) to dl. It is straightforward (although somewhat

tedious) to expressdl andV in terms of the primed unit vec-
tors at pointr ′ and evaluate the integral. In any case, the
elements of the matrixN1 are

N
(v,u)
1 = −

µ0Au

4πRI

sinθ ′ sinφ′cosI

α−β2

(
1+

β
√
α

)
, (A19)

whereI is the inclination of the magnetic field,Au is the area
of the grid cell centered atrel

u and

α= 2−2cosθ ′, (A20)

β = sinθ ′ cosφ′cosI+(1−cosθ ′)sinI. (A21)

Magnetic field of a DF SECS was calculated byAmm and
Viljanen (1999). Components of the matrixN2 are obtained
from the expression of the radial magnetic field,

N
(v,u)
2 =

µ0Au

4πRI

(
1

√
2−2cosθ ′

−1

)
. (A22)
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