403 research outputs found

    Silta esiopetuksesta alkuopetukseen:tiedonsiirtokäytänteet tukea tarvitsevan oppilaan kohdalla

    Get PDF
    Tiivistelmä. Silta esiopetuksesta alkuopetukseen — Tiedonsiirtokäytänteet tukea tarvitsevalle oppilaalle esiopetuksesta alkuopetukseen on pro gradu -tutkielma, joka on jatkoa kandidaatin tutkielmalle. Tutkimuksen tarkoituksena on selvittää lastentarhanopettajien ja luokanopettajien käsityksiä tiedonsiirtokäytänteistä tukea tarvitsevan oppilaan kohdalla. Kiinnostus tutkimusaiheeseen on noussut uusien muutosten myötä, joita ovat kolmiportaisen tukimallin käyttöönotto sekä inkluusio. Tiedonsiirtokäytänteet liittyvät tässä tutkimuksessa esi- ja alkuopetuksen väliseen yhteistyöhön. Kyseessä on laadullinen tutkimus, jossa tutkimusaineisto on kerätty teemahaastattelun avulla. Teemahaastattelun teemoja olivat kolmiportainen tukimalli, lähtökohdat tuen siirtymiselle ja tiedonsiirto. Tutkimukseen osallistui kaksi lastentarhanopettajaa sekä kaksi luokanopettajaa. Tutkimusaineisto on analysoitu aineistolähtöistä sisällönanalyysiä käyttäen. Tutkimuksessa käy ilmi, että tiedonsiirtokäytänteet koostuvat yhteistyön eri muodoista, siirtokeskusteluista ja -palavereista sekä kirjallisesta ja sähköisestä tiedonsiirrosta. Lisäksi tiedonsiirtokäytänteisiin on vaikuttanut vuonna 2011 voimaan astunut kolmiportainen tukimalli. Yhteistyö esi- ja alkuopetuksen välillä tapahtuu lastentarhanopettajan ja luokanopettajan välillä, mutta myös moniammatillisena yhteistyönä muun muassa erityisopettajan, varhaiserityisopettajan, koulupsykologin ja koulukuraattorin kanssa. Moniammatillinen yhteistyö korostuu erityisesti tukea tarvitsevien oppilaiden kohdalla. Yhteistyötä tehdään myös kodin kanssa ja se on tärkeä osa tiedonsiirtoa. Päiväkoti ja koulu järjestävät keväisin siirtokeskusteluja ja -palavereita, joissa siirretään lasta koskevia tietoja. Siirtokeskustelujen ja -palavereiden lisäksi tiedonsiirtoa tapahtuu myös kirjallisesti ja sähköisesti. Oppimissuunnitelmat siirtyvät koululle kirjallisesti tai sähköisesti. Kolmiportaisen tukimallin vaikutus tiedonsiirtokäytänteisiin näkyy asiakirjojen laatimisessa, sen tuomien muutosten kuten kolmiportaisen tukimallin käyttöönoton vakiinnuttamisessa sekä tuen tarpeen arvioinnissa. Johtopäätöksenä voidaan todeta, että esiopetuksen ja alkuopetuksen välillä on silta, jota pitkin tukea tarvitsevan oppilaan tieto siirtyy eri tiedonsiirtokäytänteiden avulla. Tiedonsiirtokäytänteissä on paljon eroavaisuuksia paikallisten opetussuunnitelmien vuoksi, eikä niitä voi yleistää koskemaan koko Suomea. Tiedonsiirtokäytänteet ovat tutkimuksen mukaan toimivia Oulun alueella esimerkiksi yhteistyön osalta. Kolmiportaisen tukimallin tuomien muutosten myötä uusien tiedonsiirtokäytänteiden vakiinnuttaminen sekä kehittäminen kentällä on tärkeää

    Deterministic Partial Differential Equation Model for Dose Calculation in Electron Radiotherapy

    Full text link
    Treatment with high energy ionizing radiation is one of the main methods in modern cancer therapy that is in clinical use. During the last decades, two main approaches to dose calculation were used, Monte Carlo simulations and semi-empirical models based on Fermi-Eyges theory. A third way to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. Starting from these, we derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free-streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on [BerCharDub], that exactly preserves key properties of the analytical solution on the discrete level. Several numerical results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure

    Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback

    Get PDF
    Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric field direction the stimuli should be given, is yet to be determined. Objective: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography (EEG). Methods: We developed an automated closed-loop TMS-EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS-EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. Results: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity. (C) 2022 The Author(s). Published by Elsevier Inc.Peer reviewe

    Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF) : A multi-channel transcranial magnetic stimulation study

    Get PDF
    Publisher Copyright: © 2021 Tugin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.Peer reviewe

    Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation

    Get PDF
    Background: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion: The developed mTMS system enables electronically targeted brain stimulation within a cortical region. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interstitial deletions of 3q29 have been recently described as a microdeletion syndrome mediated by nonallelic homologous recombination between low-copy repeats resulting in an ~1.6 Mb common-sized deletion. Given the molecular mechanism causing the deletion, the reciprocal duplication is anticipated to occur with equal frequency, although only one family with this duplication has been reported.</p> <p>Results</p> <p>In this study we describe 14 individuals with microdeletions of 3q29, including one family with a mildly affected mother and two affected children, identified among 14,698 individuals with idiopathic mental retardation who were analyzed by array CGH. Eleven individuals had typical 1.6-Mb deletions. Three individuals had deletions that flank, span, or partially overlap the commonly deleted region. Although the clinical presentations of individuals with typical-sized deletions varied, several features were present in multiple individuals, including mental retardation and microcephaly. We also identified 19 individuals with duplications of 3q29, five of which appear to be the reciprocal duplication product of the 3q29 microdeletion and 14 of which flank, span, or partially overlap the common deletion region. The clinical features of individuals with microduplications of 3q29 also varied with few common features. <it>De novo </it>and inherited abnormalities were found in both the microdeletion and microduplication cohorts illustrating the need for parental samples to fully characterize these abnormalities.</p> <p>Conclusion</p> <p>Our report demonstrates that array CGH is especially suited to identify chromosome abnormalities with unclear or variable presentations.</p

    High source levels and small active space of high-pitched song in bowhead whales (Balaena mysticetus)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Public Library of Science, doi:10.1371/journal.pone.0052072.The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.This work was funded by the Oticon Foundation (grant # 08-3469 to Arctic Station, OT). OT and MC were additionally funded by AP Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal, MS by a PhD scholarship from the Oticon Foundation, FHJ by a Danish Council for Independent Research, Natural Sciences post-doctoral grant, SEP by a grant from the U.S. Office of Naval Research, and PTM by frame grants from the Danish Natural Science Research Council

    Abundance of whales in West and East Greenland in summer 2015

    Get PDF
    An aerial line transect survey of whales in West and East Greenland was conducted in August-September 2015. The survey covered the area between the coast of West Greenland and offshore (up to 100 km) to the shelf break. In East Greenland, the survey lines covered the area from the coast up to 50 km offshore crossing the shelf break. A total of 423 sightings of 12 cetacean species were obtained and abundance estimates were developed for common minke whale, (Balaenoptera acutorostrata) (32 sightings), fin whale (Balaenoptera physalus) (129 sightings), humpback whale (Megaptera novaeangliae) (84 sightings), harbour porpoise (Phocoena phocoena) (55 sightings), long-finned pilot whale, (Globicephala melas) (42 sightings) and white-beaked dolphin (Lagenorhynchus albirostri) (50 sightings). The developed at-surface abundance estimates were corrected for both perception bias and availability bias if possible. Data on surface corrections for minke whales and harbour porpoises were collected from whales instrumented with satellite-linked time-depth-recorders. Options for estimation methods are presented and the preferred estimates are: minke whales: 5,095 (95% CI: 2,171-11,961) in West Greenland and 2,762 (95% CI: 1,160-6,574) in East Greenland, fin whales: 2,215 (95% CI: 1,017-4,823) in West Greenland and 6,440 (95% CI: 3,901-10,632) in East Greenland, humpback whales: 993 (95% CI: 434-2,272) in West Greenland and 4,223 (95% CI: 1,845-9,666) in East Greenland, harbour porpoises: 83,321 (95% CI: 43,377-160,047) in West Greenland and 1,642 (95% CI: 319-8,464) in East Greenland, pilot whales: 9,190 (95% CI: 3,635-23,234) in West Greenland and 258 (95% CI: 50-1,354) in East Greenland, white-beaked dolphins 15,261 (95% CI: 7,048-33,046) in West Greenland and 11,889 (95% CI: 4,710-30,008) in East Greenland. The abundance of cetaceans in coastal areas of East Greenland has not been estimated before, but the limited historical information from the area indicates that the achieved abundance estimates were remarkably high. When comparing the abundance estimates from 2015 in West Greenland with a similar survey conducted in 2007, there is a clear trend towards lower densities in 2015 for the three baleen whale species and white-beaked dolphins. Harbour porpoises and pilot whales, however, did not show a similar decline. The decline in baleen whale and white-beaked dolphin abundance is likely due to emigration to the East Greenland shelf areas where recent climate driven changes in pelagic productivity may have accelerated favourable conditions for these species
    • …
    corecore