Treatment with high energy ionizing radiation is one of the main methods in
modern cancer therapy that is in clinical use. During the last decades, two
main approaches to dose calculation were used, Monte Carlo simulations and
semi-empirical models based on Fermi-Eyges theory. A third way to dose
calculation has only recently attracted attention in the medical physics
community. This approach is based on the deterministic kinetic equations of
radiative transfer. Starting from these, we derive a macroscopic partial
differential equation model for electron transport in tissue. This model
involves an angular closure in the phase space. It is exact for the
free-streaming and the isotropic regime. We solve it numerically by a newly
developed HLLC scheme based on [BerCharDub], that exactly preserves key
properties of the analytical solution on the discrete level. Several numerical
results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure