775 research outputs found

    Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory

    Full text link
    The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and timing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.Comment: IEEE NSS MIC Conference 2011, Valencia, Spai

    Updated dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Get PDF
    In the light of the new data on the various neutron and proton electromagnetic form factors taken in recent years, we update the dispersion-theoretical analysis of the nucleon electromagnetic form factors from the mid-nineties. The parametrization of the spectral functions includes constraints from unitarity, perturbative QCD, and recent measurements of the neutron charge radius. We obtain a good description of most modern form factor data, with the exception of the Jefferson Lab data on G_E^p/G_M^p in the four-momentum transfer range Q^2=3...6 GeV^2. For the magnetic radii of the proton and the neutron we find r_M^p = 0.857 fm and r_M^n = 0.879 fm, which is consistent with the recent determinations using continued fraction expansions.Comment: 5 pages, 3 ps figures, final version, exp. errors in Figs. 1 and 3 correcte

    Particle Engulfment and Pushing by Solidifying Interfaces (PEPSI)

    Get PDF
    The preliminary definition phase included the following actions: producing a science requiring document (draft), producing a science requirements document (preliminary), updating the flight program proposal, project review at NASA Marshall Space Flight Center, and research work as defined in the statement of work. The first three items of this plan have been delivered by the University of Alabama to NASA according to schedule. A project review meeting was held at MSFC on June 29, 1993. Consequently, this part of the report will address the results of the research work performed in the Solidification Laboratory at the University of Alabama during the first six months of the project

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    Current Status of Endovascular Training for Cardiothoracic Surgery Residents in the United States

    Get PDF
    Background Endovascular interventions for cardiovascular pathology are becoming increasingly relevant to cardiothoracic surgery. This study assessed the perceived prevalence and efficacy of endovascular skills training and identified differences among training paradigms. Methods Trainee responses to questions in the 2016 In-Service Training Examination survey regarding endovascular training were analyzed based on the four different cardiothoracic surgery training pathways: traditional 2- and 3-year thoracic, integrated 6-year, and combined 4+3 general and thoracic residency programs. Results The duration of endovascular training was substantially different among programs, at a median of 17 weeks for integrated 6-year, 8.5 weeks for 3-year, 6 weeks for 4+3, and 4 weeks for 2-year residency (p < 0.0001). After adjusting for year of training and program type, the duration of endovascular rotations was significantly associated with self-assessed comfort with catheter-based skills (p < 0.0001). Eighty-two percent of residents rotated with trainees from other specialties, and 58% experienced competition for cases. Residents reported greater exposure to transcatheter aortic valve replacement than to thoracic endovascular aortic repair, cardiac catheterization, percutaneous closure of atrial septal defect, and transcatheter mitral valve surgery (p < 0.0001). A significant proportion of responders reported feeling uncomfortable performing key steps of transcatheter aortic valve replacement (52%) or thoracic endovascular aortic repair (49%). Conclusions Considerable heterogeneity exists in endovascular training among cardiothoracic surgery training pathways, with a significant number of residents having minimal to no exposure to these emerging techniques. These findings highlight the need for a standardized curriculum to improve endovascular exposure and training

    Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future

    Get PDF
    Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.
    • …
    corecore