330 research outputs found

    Landscape of somatic allelic imbalances and copy number alterations in HER2-amplified breast cancer

    Get PDF
    Introduction: Human epidermal growth factor receptor 2 (HER2)-amplified breast cancer represents a clinically well-defined subgroup due to availability of targeted treatment. However, HER2-amplified tumors have been shown to be heterogeneous at the genomic level by genome-wide microarray analyses, pointing towards a need of further investigations for identification of recurrent copy number alterations and delineation of patterns of allelic imbalance. Methods: High-density whole genome array-based comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) array data from 260 HER2-amplified breast tumors or cell lines, and 346 HER2-negative breast cancers with molecular subtype information were assembled from different repositories. Copy number alteration (CNA), loss-of-heterozygosity (LOH), copy number neutral allelic imbalance (CNN-AI), subclonal CNA and patterns of tumor DNA ploidy were analyzed using bioinformatical methods such as genomic identification of significant targets in cancer (GISTIC) and genome alteration print (GAP). The patterns of tumor ploidy were confirmed in 338 unrelated breast cancers analyzed by DNA flow cytometry with concurrent BAC aCGH and gene expression data. Results: A core set of 36 genomic regions commonly affected by copy number gain or loss was identified by integrating results with a previous study, together comprising > 400 HER2-amplified tumors. While CNN-AI frequency appeared evenly distributed over chromosomes in HER2-amplified tumors, not targeting specific regions and often < 20% in frequency, the occurrence of LOH was strongly associated with regions of copy number loss. HER2-amplified and HER2-negative tumors stratified by molecular subtypes displayed different patterns of LOH and CNN-AI, with basal-like tumors showing highest frequencies followed by HER2-amplified and luminal B cases. Tumor aneuploidy was strongly associated with increasing levels of LOH, CNN-AI, CNAs and occurrence of subclonal copy number events, irrespective of subtype. Finally, SNP data from individual tumors indicated that genomic amplification in general appears as monoallelic, that is, it preferentially targets one parental chromosome in HER2-amplified tumors. Conclusions: We have delineated the genomic landscape of CNAs, amplifications, LOH, and CNN-AI in HER2-amplified breast cancer, but also demonstrated a strong association between different types of genomic aberrations and tumor aneuploidy irrespective of molecular subtype

    Tooth development standards for South Australia

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: Chronological age, as recorded by registration of birth date, is referred to throughout an individual's life. This information is relevant in medical and dental practice for evaluating developmental progress, for educational purposes, and in legal matters, particularly in the application of criminal law. The absence of birth date information raises particular concerns, and estimates of chronological age are often required. Standards of dental maturation may be used to estimate age, but they have been shown to be gender and population sensitive. Methods: The revised Demirjian' system of dental age estimation was applied to a sample of 615 South Australian children in order to assess its accuracy. Results: The results of our study have shown that the Demirjian system is of limited accuracy when used to estimate the age of South Australian children. Conclusions: Generation of new standard curves, specific to the Australian population, is indicated.CJ McKenna, H James, JA Taylor, GC Townsen

    Paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern limit of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean (April 2012)

    Get PDF
    18 páginas, 10 figuras, 3 tablasThe three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed at the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific in April 2012. The upper limit of the oxygen minimum water (∼44 µmol/kg or 1 mL/L) rises from ∼100 m depth in the entrance of the Gulf of California to ∼20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline (∼20 to ∼50 m depth) and the sea surface, in the warmest (>19°C) oxygenated (>176 µmol/kg) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy (∼120 km diameter and >500 m deep), which contained lower-salinity water (<35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled nearshore. Almost no paralarvae were found in the north of the study area beyond the strong salinity front (∼34.8–35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower-salinity, oxygenated water, illustrated by the influence of the mesoscale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be concluded that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific may be increasing environmental stress on the paralarvae by vertically restricting their habitat, and so affecting their survivalThis work was made possible thanks to the financial support of SEP-CONACyT (contracts 2014-236864) and by the Instituto Politécnico Nacional (Multidisciplinary Project 2015-0176)Peer reviewe

    Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma

    Get PDF
    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events

    Towards the reconstruction of the genome-scale metabolic model of Lactobacillus acidophilus La-14

    Get PDF
    Lactobacillus acidophilus is a probiotic lactic acid bacterium used in food and dietary supplements for many years. However, despite its importance for industrial development and recognized health-promoting effects, no genome-scale metabolic model has been reported. A GSM model for L. acidophilus La-14 was developed, accounting 494 genes and 783 reactions. A genome annotation was performed to identify the metabolic potential of the bacterium. The biomass composition was determined based on information available in literature and previously published models. The model was validated by comparing in silico simulations with experimental data, regarding the aerobic and anaerobic growth. The reconstruction of the metabolic model has confirmed the fastidious requirements of L. acidophilus for amino acids, fatty acids, and vitamins. This model can be used for a better understanding of the metabolism of this bacterium and identification of industrially desirable compounds.This study was performed under the scope of the project “BIODATA.PT – Portuguese Biological Data Network” (ref. LISBOA-01-0145-FEDER-022231), funded by FCT/MCTES, through national funds of PIDDAC, Fundo Europeu de Desenvolvimento Regional (FEDER), Programa Operacional de Competitividade e Internacionalização (POCI) and Programa Operacional Regional de Lisboa (Lisboa 2020).info:eu-repo/semantics/publishedVersio

    Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation

    Get PDF
    The initiating somatic genetic events in chordoma development have not yet been identified. Most cytogenetically investigated chordomas have displayed near-diploid or moderately hypodiploid karyotypes, with several numerical and structural rearrangements. However, no consistent structural chromosome aberration has been reported. This is the first array-based study characterising DNA copy number changes in chordoma. Array comparative genomic hybridisation (aCGH) identified copy number alterations in all samples and imbalances affecting 5 or more out of the 21 investigated tumours were seen on all chromosomes. In general, deletions were more common than gains and no high-level amplification was found, supporting previous findings of primarily losses of large chromosomal regions as an important mechanism in chordoma development. Although small imbalances were commonly found, the vast majority of these were detected in single cases; no small deletion affecting all tumours could be discerned. However, the CDKN2A and CDKN2B loci in 9p21 were homo- or heterozygously lost in 70% of the tumours, a finding corroborated by fluorescence in situ hybridisation, suggesting that inactivation of these genes constitute an important step in chordoma development

    TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH) analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses.</p> <p>Results</p> <p>We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances.</p> <p>Conclusions</p> <p>TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH) in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific) CRMA v2 for Affymetrix or BeadStudio's (proprietary) XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package <it>aroma.cn</it>, which is part of the Aroma Project (<url>http://www.aroma-project.org/</url>).</p

    A new classification method using array Comparative Genome Hybridization data, based on the concept of Limited Jumping Emerging Patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification using aCGH data is an important and insufficiently investigated problem in bioinformatics. In this paper we propose a new classification method of DNA copy number data based on the concept of limited Jumping Emerging Patterns. We present the comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the case of high-throughput data.</p> <p>Results</p> <p>Our results revealed that the classification performance using limJEPClassifier is significantly higher than other methods. Furthermore, we show that application of the limited JEP's can significantly improve classification, when strongly unbalanced data are given.</p> <p>Conclusion</p> <p>Nowadays, aCGH has become a very important tool, used in research of cancer or genomic disorders. Therefore, improving classification of aCGH data can have a great impact on many medical issues such as the process of diagnosis and finding disease-related genes. The performed experiment shows that the application of Jumping Emerging Patterns can be effective in the classification of high-dimensional data, including these from aCGH experiments.</p

    Epigenome-wide gene-age interaction analysis reveals reversed effects of PRODH DNA methylation on survival between young and elderly early-stage NSCLC patients

    Get PDF
    DNA methylation changes during aging, but it remains unclear whether the effect of DNA methylation on lung cancer survival varies with age. Such an effect could decrease prediction accuracy and treatment efficacy. We performed a methylation-age interaction analysis using 1,230 early-stage lung adenocarcinoma patients from five cohorts. A Cox proportional hazards model was used to investigate lung adenocarcinoma and squamous cell carcinoma patients for methylation-age interactions, which were further confirmed in a validation phase. We identified one adenocarcinoma-specific CpG probe, cg14326354PRODH, with effects significantly modified by age (HRinteraction = 0.989; 95% CI: 0.986-0.994; P = 9.18×10-7). The effect of low methylation was reversed for young and elderly patients categorized by the boundary of 95% CI standard (HRyoung = 2.44; 95% CI: 1.26-4.72; P = 8.34×10-3; HRelderly = 0.58; 95% CI: 0.42-0.82; P = 1.67×10-3). Moreover, there was an antagonistic interaction between low cg14326354PRODH methylation and elderly age (HRinteraction = 0.21; 95% CI: 0.11-0.40; P = 2.20×10-6). In summary, low methylation of cg14326354PRODH might benefit survival of elderly lung adenocarcinoma patients, providing new insight to age-specific prediction and potential drug targeting

    Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays

    Get PDF
    Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms. The proposed method does not require matched normal samples, and can estimate the unknown genotypes simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes
    corecore