134 research outputs found

    Microstructure dependence of fatigue crack propagation behavior in wrought magnesium alloy

    Get PDF
    This paper deals with the fatigue crack propagation behavior of rolled AZ31B magnesium alloy (grain size: approximately 40 ?m). Fatigue crack propagation tests were performed on single edge notched tension specimens at a stress ratio of R = 0.1 and a frequency of 10 Hz at room temperature. Loading axes were parallel to the rolling direction; fatigue cracks propagated parallel to the transverse direction (L-T specimen), parallel to the short transverse direction (L-S specimen). Loading axis was perpendicular to the rolling direction; fatigue cracks propagated parallel to the transverse direction (S-T specimen). The crack growth rate (da/dN) of the L-S specimen was several times lower than that of the L-T specimen in the examined stress intensity factor range (?K). Fracture surfaces of the L-T and L-S specimens showed many steps parallel and perpendicular, respectively, to the macroscopic crack growth direction. The da/dN of the S-T specimen was higher than that of the L-T and L-S specimens in the examined ?K. The fracture surface was covered by quasi-cleavage facets independent of macroscopic crack growth direction, and the fracture surface roughness at low ?K was larger than that at high ?K

    Microstructure, texture and tensile properties of ultrafine/nano grained magnesium alloy processed by accumulative back extrusion

    Get PDF
    An AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture and room temperature tensile properties were characterized and discussed. Ultrafine grained microstructure including nano grains were developed, where the obtained mean grain size was decreased from 8 to 0.5 µm by applying consecutive passes. The frequency of both low angle and high angle boundaries increased after processing. Strength of the experimental alloy was decreased after processing, which was attributed to the obtained texture involving the major component lying inclined to the deformation axis. Both the uniform and post uniform elongations of the processed materials were increased after processing, where a total elongation of 68 pct was obtained after six-pass deformation. The contribution of different twinning and slip mechanism was described by calculating corresponding Schmid factors. The operation of prismatic slip was considered as the major deformation contributor. The significant increase in post uniform deformation of the processed material was discussed relying on the occurrence of grain boundary sliding associated with the operation of prismatic slip.Postprint (author's final draft

    Analysis of microstructure effects on edge crack of thin strip during cold rolling

    Get PDF
    Edge cracks in cold rolling of the thin strip affect the strip quality and productivity significantly. In this study, an experimental and mechanical investigation on microstructures has been carried out to study the edge crack formation during cold rolling of the thin strip. The effects of the feed material microstructures on the edge crack evolution were studied employing optical microscopy and scanning electron microscopy (SEM). Experimental observation indicates that fine grain occurs in hot-rolled microstructure and coarse grain is produced in ferritic rolled microstructure. Different grain sizes affect significantly the formation mechanics of the microcrack, crack initiation, and orientation of crack extension. The grain size and grain boundaries effects on crack retardation are discussed also during edge crack initiation. During the crack growth in coarse grain, most edge crack tips will blunt, which improves the crack toughness by causing less stress concentration. Overall, the fine microstructure shows a good crack initiation resistance, whereas the coarse microstructure has a better resistance to crack propagation. This research provides additional understanding of the mechanism of microstructure influence on edge crack evolution of cold strip rolling, which could be helpful for developing defect-free thin strip

    Biodegradable, flexible silicon nanomembrane-based NO x gas sensor system with record-high performance for transient environmental monitors and medical implants

    Get PDF
    Abstract: A novel transient electronics technology that is capable of completely dissolving or decomposing in certain conditions after a period of operation offers unprecedented opportunities for medical implants, environmental sensors, and other applications. Here, we describe a biodegradable, flexible silicon-based electronic system that detects NO species with a record-breaking sensitivity of 136 Rs (5 ppm, NO2) and 100-fold selectivity for NO species over other substances with a fast response (~30 s) and recovery (~60 s). The exceptional features primarily depend on not only materials, dimensions, and design layouts but also temperatures and electrical operations. Large-scale sensor arrays in a mechanically pliable configuration exhibit negligible deterioration in performance under various modes of applied loads, consistent with mechanics modeling. In vitro evaluations demonstrate the capability and stability of integrated NOx devices in severe wet environments for biomedical applications

    Positive association of the hepatic lipase gene polymorphism c.514C > T with estrogen replacement therapy response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic lipase (HL), an enzyme present in the hepatic sinusoids, is responsible for the lipolysis of lipoproteins. Human HL contains four polymorphic sites: G-250A, T-710C, A-763G, and C-514T single-nucleotide polymorphism (SNPs). The last polymorphism is the focus of the current study. The genotypes associated with the C-514T polymorphism are CC (normal homozygous - W), CT (heterozygous - H), and TT (minor-allele homozygous - M). HL activity is significantly impaired in individuals of the TT and CT genotypes. A total of 58 post-menopausal women were studied. The subjects were hysterectomized women receiving hormone replacement therapy consisting of 0.625 mg of conjugated equine estrogen once a day. The inclusion criteria were menopause of up to three years and normal blood tests, radiographs, cervical-vaginal cytology, and densitometry. DNA was extracted from the buccal and blood cells of all 58 patients using a commercially available kit (GFX<sup>® </sup>- Amersham-Pharmacia, USA).</p> <p>Results</p> <p>Statistically significant reductions in triglycerides (t = 2.16; n = 58; p = 0.03) but not in total cholesterol (t = 0.14; n = 58; p = 0.89) were found after treatment. This group of good responders were carriers of the T allele; the CT and TT genotypes were present significantly more frequently than in the group of non-responders (p = 0.02 or p = 0.07, respectively). However, no significant difference in HDL-C (t = 0.94; n = 58; p = 0.35) or LDL-C (t = -0.83; n = 58; p = 0.41) was found in these patients.</p> <p>Conclusions</p> <p>The variation in lipid profile associated with the C-514T polymorphism is significant, and the T allele is associated with the best response to ERT.</p

    Guidance from an NIH Workshop on Designing, Implementing, and Reporting Clinical Studies of Soy Interventions1–4

    Get PDF
    The NIH sponsored a scientific workshop, “Soy Protein/Isoflavone Research: Challenges in Designing and Evaluating Intervention Studies,” July 28–29, 2009. The workshop goal was to provide guidance for the next generation of soy protein/isoflavone human research. Session topics included population exposure to soy; the variability of the human response to soy; product composition; methods, tools, and resources available to estimate exposure and protocol adherence; and analytical methods to assess soy in foods and supplements and analytes in biologic fluids and other tissues. The intent of the workshop was to address the quality of soy studies, not the efficacy or safety of soy. Prior NIH workshops and an evidence-based review questioned the quality of data from human soy studies. If clinical studies are pursued, investigators need to ensure that the experimental designs are optimal and the studies properly executed. The workshop participants identified methodological issues that may confound study results and interpretation. Scientifically sound and useful options for dealing with these issues were discussed. The resulting guidance is presented in this document with a brief rationale. The guidance is specific to soy clinical research and does not address nonsoy-related factors that should also be considered in designing and reporting clinical studies. This guidance may be used by investigators, journal editors, study sponsors, and protocol reviewers for a variety of purposes, including designing and implementing trials, reporting results, and interpreting published epidemiological and clinical studies
    corecore