182 research outputs found
SoNeUCON_{ABC}Pro: an access control model for social networks with translucent user provenance
Proceedings of: SecureComm 2017 International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada, October 22β25, 2017Web-Based Social Networks (WBSNs) are used by millions of people worldwide. While WBSNs provide many benefits, privacy preservation is a concern. The management of access control can help to assure data is accessed by authorized users. However, it is critical to provide sufficient flexibility so that a rich set of conditions may be imposed by users. In this paper we coin the term user provenance to refer to tracing users actions to supplement the authorisation decision when users request access. For example restricting access to a particular photograph to those which have βlikedβ the owners profile. However, such a tracing of actions has the potential to impact the privacy of users requesting access. To mitigate this potential privacy loss the concept of translucency is applied. This paper extends SoNeUCONABC model and presents SoNeUCONABCPro, an access control model which includes translucent user provenance. Entities and access control policies along with their enforcement procedure are formally defined. The evaluation demonstrates that the system satisfies the imposed goals and supports the feasibility of this model in different scenarios.This work was supported by the MINECO grants TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and TIN2016-79095-C2-2-R (SMOG-DEV); by the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks); and by the Programa de Ayudas para la Movilidad of Carlos III University of Madrid, Spain (J. M. de Fuentes and L. Gonzalez-Manzano grants)
Loss of the Tumor Suppressor Pten Promotes Proliferation of Drosophila melanogaster Cells In Vitro and Gives Rise to Continuous Cell Lines
In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (RasV12) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing RasV12. Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines
Sample multiplexing-based targeted pathway proteomics with real-time analytics reveals the impact of genetic variation on protein expression.
Targeted proteomics enables hypothesis-driven research by measuring the cellular expression of protein cohorts related by function, disease, or class after perturbation. Here, we present a pathway-centric approach and an assay builder resource for targeting entire pathways of up to 200 proteins selected from \u3e10,000 expressed proteins to directly measure their abundances, exploiting sample multiplexing to increase throughput by 16-fold. The strategy, termed GoDig, requires only a single-shot LC-MS analysis, ~1βΒ΅g combined peptide material, a list of up to 200 proteins, and real-time analytics to trigger simultaneous quantification of up to 16 samples for hundreds of analytes. We apply GoDig to quantify the impact of genetic variation on protein expression in mice fed a high-fat diet. We create several GoDig assays to quantify the expression of multiple protein families (kinases, lipid metabolism- and lipid droplet-associated proteins) across 480 fully-genotyped Diversity Outbred mice, revealing protein quantitative trait loci and establishing potential linkages between specific proteins and lipid homeostasis
A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments
Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
Recommended from our members
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems
Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children
<p>Abstract</p> <p>Background</p> <p>Levels of pesticides and other compounds in carpet dust can be useful indicators of exposure in epidemiologic studies, particularly for young children who are in frequent contact with carpets. The high-volume surface sampler (HVS3) is often used to collect dust samples in the room in which the child had spent the most time. This method can be expensive and cumbersome, and it has been suggested that an easier method would be to remove dust that had already been collected with the household vacuum cleaner. However, the household vacuum integrates exposures over multiple rooms, some of which are not relevant to the child's exposure, and differences in vacuuming equipment and practices could affect the chemical concentration data. Here, we compare levels of pesticides and other compounds in dust from household vacuums to that collected using the HVS3.</p> <p>Methods</p> <p>Both methods were used in 45 homes in California. HVS3 samples were collected in one room, while the household vacuum had typically been used throughout the home. The samples were analyzed for 64 organic compounds, including pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls (PCBs), using GC/MS in multiple ion monitoring mode; and for nine metals using conventional microwave-assisted acid digestion combined with ICP/MS.</p> <p>Results</p> <p>The methods agreed in detecting the presence of the compounds 77% to 100% of the time (median 95%). For compounds with less than 100% agreement, neither method was consistently more sensitive than the other. Median concentrations were similar for most analytes, and Spearman correlation coefficients were 0.60 or higher except for allethrin (0.15) and malathion (0.24), which were detected infrequently, and benzo(k)fluoranthene (0.55), benzo(a)pyrene (0.55), PCB 105 (0.54), PCB 118 (0.54), and PCB 138 (0.58). Assuming that the HVS3 method is the "gold standard," the extent to which the household vacuum cleaner method yields relative risk estimates closer to unity by increasing random measurement error varies by compound and depends on the method used to calculate relative risk.</p> <p>Conclusion</p> <p>The household vacuum cleaner method appears to be a reasonable alternative to the HVS3 for detecting, ranking, and quantifying the concentrations of pesticides and other compounds in carpet dust.</p
Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait
This article presents a stimulation control method using a uniaxial gyroscope measuring angular velocity of the shank in the sagittal plane, to control functional electrical stimulation of the triceps surae to improve push-off of stroke subjects during gait. The algorithm is triggered during each swing phase of gait when the angular velocity of the shank is relatively high. Subsequently, the start of the stance phase is detected by a change of sign of the gyroscope signal at approximately the same time as heel strike. Stimulation is triggered when the shank angle reaches a preset value since the beginning of stance. The change of angle is determined by integrating angular velocity from the moment of change of sign. The results show that the real-time reliability of stimulation control was at least 95% for four of the five stroke subjects tested, two of which were 100% reliable. For the remaining subject, the reliability was increased from 50% found during the experiment, to 99% during offline processing. Our conclusion is that a uniaxial gyroscope on the shank is a simple, more reliable alternative to the heel switch for the purpose of restoring push-off of stroke subjects during gait
Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes
Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype
Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition
MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17βΌ92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies
Limited Relationship between Cervico-Vaginal Fluid Cytokine Profiles and Cervical Shortening in Women at High Risk of Spontaneous Preterm Birth
Objective: to determine the relationship between high vaginal pro-inflammatory cytokines and cervical shortening in women at high risk of spontaneous preterm labor and to assess the influence of cervical cerclage and vaginal progesterone on this relationship. Methods: this prospective longitudinal observational study assessed 112 women with at least one previous preterm delivery between 16 and 34 weeksβ gestation. Transvaginal cervical length was measured and cervico-vaginal fluid sampled every two weeks until 28 weeks. If the cervix shortened (<25 mm) before 24 weeksβ gestation, women (cases) were randomly assigned to cerclage or progesterone and sampled weekly. Cytokine concentrations were measured in a subset of cervico-vaginal fluid samples (nβ=β477 from 78 women) by 11-plex fluid-phase immunoassay. Results: all 11 inflammatory cytokines investigated were detected in cervico-vaginal fluid from women at high risk of preterm birth, irrespective of later cervical shortening. At less than 24 weeksβ gestation and prior to intervention, women destined to develop a short cervix (nβ=β36) exhibited higher cervico-vaginal concentrations than controls (nβ=β42) of granulocyte-macrophage colony-stimulating factor [(GM-CSF) 16.2 fold increase, confidence interval (CI) 1.8β147; pβ=β0.01] and monocyte chemotactic protein-1 [(MCP-1) 4.8, CI 1.0β23.0; pβ=β0.05]. Other cytokines were similar between cases and controls. Progesterone treatment did not suppress cytokine concentrations. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-Ξ³ and tumour necrosis factor (TNF)-Ξ± concentrations were higher following randomization to cerclage versus progesterone (p<0.05). Cerclage, but not progesterone treatment, was followed by a significant increase in cervical length [mean 11.4 mm, CI 5.0β17.7; p<0.001]. Conclusions: although GM-CSF and MCP-1 cervico-vaginal fluid concentrations were raised, the majority of cervico-vaginal cytokines did not increase in association with cervical shortening. Progesterone treatment showed no significant anti-inflammation action on cytokine concentrations. Cerclage insertion was associated with an increase in the majority of inflammatory markers and cervical length
- β¦