1,634 research outputs found

    Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy

    Full text link
    In this paper we present a simple and robust method for self-correction of camera distortion using single images of scenes which contain straight lines. Since the most common distortion can be modelled as radial distortion, we illustrate the method using the Harris radial distortion model, but the method is applicable to any distortion model. The method is based on transforming the edgels of the distorted image to a 1-D angular Hough space, and optimizing the distortion correction parameters which minimize the entropy of the corresponding normalized histogram. Properly corrected imagery will have fewer curved lines, and therefore less spread in Hough space. Since the method does not rely on any image structure beyond the existence of edgels sharing some common orientations and does not use edge fitting, it is applicable to a wide variety of image types. For instance, it can be applied equally well to images of texture with weak but dominant orientations, or images with strong vanishing points. Finally, the method is performed on both synthetic and real data revealing that it is particularly robust to noise.Comment: 9 pages, 5 figures Corrected errors in equation 1

    Implementation of Precast Technology in India–Opportunities and Challenges

    Get PDF
    Rapid economic growth and limited availability of affordable land have restricted the horizontal mode of construction leading to vertical construction in most of the Indian cities. Urban India is mostly marked by tall buildings that are being built. Due to the economic slowdown and some governmental interventions, these building projects are seeing significant time and cost overrun, ultimately impacting the end-user. As these market pressures rise more and more, real estate developers are considering to adopt emerging technologies to compensate for these construction issues. Indian construction industry is undergoing a paradigm shift from traditional methods of construction to modern methods of construction. Precast technology is one such move which is expected to enhance the productivity of the construction process, thereby, optimizing the requirement of resources on the site, reducing waste generation and resulting in a faster delivery of the projects. While internationally precast technology is considered as a mature technology, in India, it is not widely utilized, despite the advantages. Commonly cited constraints are high costs in comparison to traditional construction, economies of scale, logistics, skill level required, end user friendliness, etc. Primarily, this study focusses on identifying the challenges faced by the precast technology under various categories. This study also presents a cost analysis model for precast technology versus traditional construction to address some of the challenges. Presented cost model is applied to two projects wherein precast technology and conventional technology are utilized to construct the project and an inference is drawn comparing the time and cost aspects of precast technology. Amicable solutions are proposed for adoption of precast construction from an Indian perspective

    Proteomic analysis of tomato (Lycopersicon esculentum) pollen

    Get PDF
    In flowering plants, pollen grains are produced in the anther and released to the external environment with the primary function of delivering sperm cells to the female gametophyte. This study was conducted to identify proteins in tomato pollen and to analyse their roles in relation to pollen function. Tomato is an important crop which is grown worldwide and is an excellent experimental system. Proteins were extracted from pollen, separated by two-dimensional gel electrophoresis (2-DE), and identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and peptide mass fingerprinting. Of the 960 spots observed on Colloidal Coomassie Blue (CCB)-stained 2-DE gels, 190 were selected for analysis. Of these, 158 spots, representing 133 distinct proteins, were identified by searching the NCBInr and Expressed Sequence Tag databases. The identified proteins were classified based on designated functions and the majority included those involved in defence mechanisms, energy conversions, protein synthesis and processing, cytoskeleton formation, Ca(2+) signalling, and as allergens. A number of proteins in tomato pollen were similar to those reported in the pollen of other species; however, several additional proteins with roles in defence mechanisms, metabolic processes, and hormone signalling were identified. The potential roles of the identified proteins in the survival strategy of the small, independent, two-celled pollen grain of tomato, and subsequently in pollen germination and tube growth are discussed

    Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen

    Get PDF
    Proteome analysis of mature Arabidopsis thaliana (Landsberg erecta ecotype) pollen was conducted using two-dimensional gel electrophoresis and mass spectrometry. A total of 960 spots were resolved on pH 4–7 IPG strips and 110 distinct proteins were identified from 150 spots analyzed. The identified proteins were categorized based on their functional role in the pollen, which included proteins involved in energy regulation, defense-related mechanisms, calcium-binding and signaling, cytoskeletal formation, pollen allergens, glycine-rich proteins (GRPs), and late embryogenesis abundant (LEA) proteins. These proteins potentially play important roles in pollen function at maturity and during subsequent germination and tube growth. Some of the proteins identified were related to known pollen-specific transcripts, while some were similar to proteins found in the seed. In this study, 66 new proteins were identified which were not reported in two other recent studies on Arabidopsis pollen, 17 proteins were common in all three studies, and 35 or 26 proteins reported here had an overlap with one or the other two studies. These differences may be attributed to the methods of protein extraction, spot selection for analysis, and the ecotype used. Together, the three studies provide a broad spectrum of the Arabidopsis pollen proteome

    High-energy, high-resolution, fly-scan X-ray phase tomography

    Get PDF
    High energy X-ray phase contrast tomography is tremendously beneficial to the study of thick and dense materials with poor attenuation contrast. Recently, the X-ray speckle-based imaging technique has attracted widespread interest because multimodal contrast images can now be retrieved simultaneously using an inexpensive wavefront modulator and a less stringent experimental setup. However, it is time-consuming to perform high resolution phase tomography with the conventional step-scan mode because the accumulated time overhead severely limits the speed of data acquisition for each projection. Although phase information can be extracted from a single speckle image, the spatial resolution is deteriorated due to the use of a large correlation window to track the speckle displacement. Here we report a fast data acquisition strategy utilising a fly-scan mode for near field X-ray speckle-based phase tomography. Compared to the existing step-scan scheme, the data acquisition time can be significantly reduced by more than one order of magnitude without compromising spatial resolution. Furthermore, we have extended the proposed speckle-based fly-scan phase tomography into the previously challenging high X-ray energy region (120 keV). This development opens up opportunities for a wide range of applications where exposure time and radiation dose are critical

    Biomarkers differentiate drug-induced liver injury from other liver injury: PONDER study

    Get PDF
    Background and Aim: Drug-induced liver injury (DILI) is a known complication of volatile anesthetic (VA) agents, and, despite being rare, DILI can be serious. One mechanism of VA-DILI occurs via interleukin 4 (IL-4)driven upregulation of cytochrome P450-2E1, leading to the formation of drug metabolites (haptens) that trigger IL-4-driven antigen-specific T cells and autoantibodies. Our group has developed biomarkers for liver injury and have examined this in patients before and after VA exposure. The aim of this prospective study was to determine the early markers of VA-DILI. Methods: We prospectively followed patients having a VA general anesthetic (sevoflurane and/or desflurane) and compared them with those who received regional or total intravenous anesthesia. Exclusion criteria were known liver disease or any episode of significant hypotension. Baseline data on patient demographics and comorbidities were collected, and blood was analyzed for liver biochemistry, macrophage activation markers (CD206, CD163), and IgG1 and IgG4 antibodies to JHDN5 (the CYP2E1 epitope) and trifluoroacetyl (TFA), the VA drug hapten. Follow-up blood samples were taken 48 h postoperatively and compared with baseline results. DILI was defined as an alanine aminotransferase (ALT) level greater than two times the upper limit of normal (ULN) and post-review agreement by an expert panel, taking into account the pattern of liver function test result derangement and intraoperative events. Results: Of 229 patients recruited, 16 developed an ALT level > 2 × ULN. Twelve were considered likely to have VA-DILI, including four with an ALT rise >3 × ULN. There was a trend to associate VA-DILI with obesity (RR, 2.98; P = 0.063); however, the association with dyslipidemia (RR, 1.47; P = 0.72), male sex (RR, 1.18; P = 0.76), history of atopy (RR, 1.16; P = 0.79), and heavy ethanol consumption (RR, 1.09; P = 0.89) was not statistically significant. Prior VA exposure was not a risk factor (RR, 0.89; P = 0.83). There was a rise in CD206 and decline in CD163 from baseline in all patients. However, in the patients with VA-DILI, the levels were significantly different from all other groups. TFA IgG1 and IgG4 antibodies were elevated in the VA-DILI group when compared with controls. Conclusion: Recognizing that our results may be skewed by our cohort, this work suggests the known immunological pathway mediated by IL-4 in response to an injury: rise in CD206 to stimulate an inflammatory response, and decrease in CD163 to modulate the response. The increase in TFA IgG1 and IgG4 antibodies in the VA-DILI group is consistent with metabolism and the heightened immune response in those who develop DILI. At this early juncture, JHDN5 IgG4 autoantibodies were not detected. Ongoing work is looking at other DILI, and how these markers can be used in DILI

    High-energy, high-resolution, fly-scan X-ray phase tomography

    Get PDF
    High energy X-ray phase contrast tomography is tremendously beneficial to the study of thick and dense materials with poor attenuation contrast. Recently, the X-ray speckle-based imaging technique has attracted widespread interest because multimodal contrast images can now be retrieved simultaneously using an inexpensive wavefront modulator and a less stringent experimental setup. However, it is time-consuming to perform high resolution phase tomography with the conventional step-scan mode because the accumulated time overhead severely limits the speed of data acquisition for each projection. Although phase information can be extracted from a single speckle image, the spatial resolution is deteriorated due to the use of a large correlation window to track the speckle displacement. Here we report a fast data acquisition strategy utilising a fly-scan mode for near field X-ray speckle-based phase tomography. Compared to the existing step-scan scheme, the data acquisition time can be significantly reduced by more than one order of magnitude without compromising spatial resolution. Furthermore, we have extended the proposed speckle-based fly-scan phase tomography into the previously challenging high X-ray energy region (120 keV). This development opens up opportunities for a wide range of applications where exposure time and radiation dose are critical

    Effect of sotagliflozin as an adjunct to insulin therapy on blood pressure and arterial stiffness in adults with type 1 diabetes: A post hoc pooled analysis of inTandem1 and inTandem2

    Get PDF
    Objective: Evaluate the effect of sotagliflozin, a dual inhibitor of sodium glucose cotransporter (SGLT) 1 and 2, on arterial stiffness in patients with type 1 diabetes (T1D) treated with sotagliflozin as adjunct to optimized insulin therapy. Methods: In this post hoc analysis, indirect markers of arterial stiffness, including pulse pressure, mean arterial pressure (MAP), and double product, were calculated using observed systolic blood pressure (SBP), diastolic blood pressure (DBP), or pulse rate at 24 weeks using data from a pooled patient population from the inTandem1 and inTandem2 randomized controlled trials (n = 1575). Results: Baseline characteristics were similar among groups. Relative to placebo at Week 24, sotagliflozin 200 mg and 400 mg reduced SBP by 2.03 mm Hg (95% CI −3.30 to −0.75; p = 0.0019) and 2.85 mm Hg (−4.12 to −1.57; p < 0.0001), respectively. DBP decreased by 1.1 and 0.9 mm Hg, MAP by 1.4 and 1.6 mm Hg, and double product by 202.5 and 221.1 bpm × mm Hg, respectively (p < 0.05 for all). No increases in heart rate were observed. Conclusion: In adults with T1D, adding sotagliflozin to insulin significantly reduced blood pressure and other markers of arterial stiffness and vascular resistance

    Adoption of BIM by architectural firms in India: technology–organization–environment perspective

    Get PDF
    Building information modelling (BIM) is being heralded as a remarkable innovation in the built environment sector with expectations of lofty sector-wide improvements. Some countries have shown remarkable levels of uptake of BIM, along the way documenting some evidence of benefits stemming from BIM. However, countries such as India and China are late entrants in the BIM adoption journey and are seeing a slower adoption rate. This study develops a model using the technology–organization–environment framework to study the factors influencing BIM adoption by architectural firms in India and reasons for this slow adoption. The proposed model of BIM adoption is tested using the partial least square method against responses collected from 184 industry professionals based in India. Findings reveal that the adoption of BIM by Indian architectural firms is at the ‘experimentation’ stage with variables such as expertise, trialability, and management support exhibiting a strong positive influence on BIM adoption. The study also explains the status of BIM adoption in India with the help of a multi-level social construct, which places the level of BIM adoption in India between the micro- and meso-levels of organizational scales. Similarities and dissimilarities with previous findings are discussed in the paper to highlight the findings of this study. © 2016 Informa UK Limited, trading as Taylor & Francis Grou

    Moving from a Product-Based Economy to a Service-Based Economy for a More Sustainable Future

    Get PDF
    Traditionally, economic growth and prosperity have been linked with the availability, production and distribution of tangible goods as well as the ability of consumers to acquire such goods. Early evidence regarding this connection dates back to Adam Smith's Wealth of Nations (1776), in which any activity not resulting in the production of a tangible good is characterized as unproductive of any value." Since then, this coupling of economic value and material production has been prevalent in both developed and developing economies throughout the world. One unintended consequence of this coupling has been the exponential increase in the amount of solid waste being generated. The reason is that any production and consumption of material goods eventually generates the equivalent amount of (or even more) waste. Exacerbating this problem is the fact that, with today's manufacturing and supply chain management technologies, it has become cheaper to dispose and replace most products rather than to repair and reuse them. This has given rise to what some call a disposable society." To put things in perspective: In 2012 households in the U.K. generated approximately 22 thousand tons of waste, which amounted to 411 kg of waste generated per person (Department for Environment, Food & Rural Affairs, 2015). During the same time period, households in the U.S. generated 251 million tons of waste, which is equivalent to a person generating approximately 2 kg of waste every day (U.S. Environmental Protection Agency, 2012). Out of these 251 million tons of total waste generated, approximately 20% of the discarded items were categorized as durable goods. The disposal of durable goods is particularly worrisome because they are typically produced using material from non- renewable resources such as iron, minerals, and petroleum-based raw materials
    corecore