404 research outputs found

    Robustness and Predictivity of 4 TeV Unification

    Get PDF
    The stability of the predictions of two of the standard model parameters, α3(MZ)\alpha_3(M_Z) and sin⁥2Ξ(MZ)\sin^2 \theta(M_Z), in a MU∌4M_U \sim 4 TeV unification model is examined. It is concluded that varying the unification scale between MU≃2.5M_U \simeq 2.5 TeV and MU≃5M_U \simeq 5 TeV leaves robust all predictions within reasonable bounds. Choosing MU=3.8±0.4M_U = 3.8 \pm 0.4 TeV gives, at lowest order, accurate predictions at MZM_Z. Flavor-changing effects and deviations from precision electroweak data are discussed

    Chiral Fermions and Quadratic Divergences

    Full text link
    In an approach towards naturalness without supersymmetry, renormalization properties of nonsupersymmetric abelian quiver gauge theories are studied. In the construction based on cyclic groups Z_p the gauge group is U(N)^p, the fermions are all in bifundamentals and the construction allows scalars in adjoints and bifundamentals. Only models without adjoint scalars, however, exhibit both chiral fermions and the absence of one-loop quadratic divergences in the scalar propagator.Comment: 11 page

    Post-recruitment Survival of White-tailed Deer Fawns in Southern Illinois

    Get PDF
    Reliable estimates of survival for white-tailed deer (Odocoileus virginianus) fawns are needed for sound deer management. Several studies have estimated fawn survival prior to recruitment (i.e., before the onset of hunting season) but few have monitored fawns post-recruitment, especially in the lower Midwest or Southeast. We captured and radiocollared 166 neonatal fawns during 2002–2004 in southern Illinois. Ninety-one fawns survived to recruitment and were monitored for survival from 1 October until the end of the firearm hunting season (typically 8 December). Post-recruitment survival was 0.73 (95% CI = 0.63 – 0.83). Hunter harvest was the primary source of mortality (13%) followed by vehicle collisions (8%). Male and female harvest mortality was 14% and 12%, respectively, and did not differ (P = 0.73). By monitoring radiocollared fawns through the firearm hunting season, we were able to estimate proportion of fawns harvested in southern Illinois without biases associated with harvest data. We also suggest vehicle collisions are another important source of mortality for fawns and should be incorporated into population models and management decisions

    Environmental and workplace contamination in the semiconductor industry: implications for future health of the workforce and community.

    Get PDF
    The semiconductor industry has been an enormous worldwide growth industry. At the heart of computer and other electronic technological advances, the environment in and around these manufacturing facilities has not been scrutinized to fully detail the health effects to the workers and the community from such exposures. Hazard identification in this industry leads to the conclusion that there are many sources of potential exposure to chemicals including arsenic, solvents, photoactive polymers and other materials. As the size of the semiconductor work force expands, the potential for adverse health effects, ranging from transient irritant symptoms to reproductive effects and cancer, must be determined and control measures instituted. Risk assessments need to be effected for areas where these facilities conduct manufacturing. The predominance of women in the manufacturing areas requires evaluating the exposures to reproductive hazards and outcomes. Arsenic exposures must also be evaluated and minimized, especially for maintenance workers; evaluation for lung and skin cancers is also appropriate

    Cosmic Background Radiation Temperature Anisotropy: Position of First Doppler Peak

    Get PDF
    The purpose of the Cosmic Background Radiation (CBR) experiments is to measure the temperature anisotropy via the autocorrelation function. The partial wave l1l_1 corresponding to the first Doppler peak caused by baryon-photon oscillations at the surface of last scattering depends on the present density Ω0\Omega_0 and the cosmological constant contribution ΩΛ\Omega_{\Lambda}. We discuss this dependence on the basis of perspicuous figures.Comment: 16 pages LaTeX including four figure

    Fiber from fruit pomace: A review of applications in cereals-based products

    Full text link
    [EN] Fruit pomace is a by-product of the fruit processing industry composed of cell wall compounds, stems, and seeds of the fruit; after washing, drying, and milling, a material high in fiber and bioactive compounds is obtained. In bakery products, dried fruit pomace can be added to replace flour, sugar, or fat and thus reduce energy load while enhancing fiber and antioxidant contents. The high fiber content of fruit pomace, however, results in techno-functional interactions that affect physicochemical and sensory properties. In this article, different sources of fruit pomace are discussed along with their application in bread, brittle and soft bakery products, and extrudates.The funding, assured through the national partner organizations, is gratefully acknowledged: INIA in Spain, DEFRA in UK, and Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004).Quiles ChuliĂĄ, MD.; Campbell, G.; Struck, S.; Rohm, H.; Hernando Hernando, MI. (2016). Fiber from fruit pomace: A review of applications in cereals-based products. Food Reviews International. 34(2):162-181. https://doi.org/10.1080/87559129.2016.1261299S162181342Figuerola, F., Hurtado, M. L., EstĂ©vez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036Rohm, H., Brennan, C., Turner, C., GĂŒnther, E., Campbell, G., Hernando, I., 
 Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690Saura-Calixto, F. (1998). Antioxidant Dietary Fiber Product:  A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303-4306. doi:10.1021/jf9803841Viebke, C., Al-Assaf, S., & Phillips, G. O. (2014). Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre, 4(2), 101-114. doi:10.1016/j.bcdf.2014.06.006Lattimer, J. M., & Haub, M. D. (2010). Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients, 2(12), 1266-1289. doi:10.3390/nu2121266Slavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 5(4), 1417-1435. doi:10.3390/nu5041417Struck, S., Gundel, L., Zahn, S., & Rohm, H. (2016). Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Science and Technology, 65, 32-38. doi:10.1016/j.lwt.2015.07.053Grigelmo-Miguel, N., & Martı́n-Belloso, O. (1999). Comparison of Dietary Fibre from By-products of Processing Fruits and Greens and from Cereals. LWT - Food Science and Technology, 32(8), 503-508. doi:10.1006/fstl.1999.0587Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., & Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4(2), 250-258. doi:10.1016/j.bcab.2015.02.003MartĂ­, N., Saura, D., Fuentes’, E., Lizama, V., GarcĂ­a, E., Mico-Ballester, M. J., & Lorente, J. (2011). Fiber from tangerine juice industry. Industrial Crops and Products, 33(1), 94-98. doi:10.1016/j.indcrop.2010.09.004Iora, S. R. F., Maciel, G. M., Zielinski, A. A. F., da Silva, M. V., Pontes, P. V. de A., Haminiuk, C. W. I., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62-69. doi:10.1111/ijfs.12583Yu, J., & Ahmedna, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221-237. doi:10.1111/j.1365-2621.2012.03197.xMilala, J., Kosmala, M., SĂłjka, M., KoƂodziejczyk, K., ZbrzeĆșniak, M., & Markowski, J. (2011). Plum pomaces as a potential source of dietary fibre: composition and antioxidant properties. Journal of Food Science and Technology, 50(5), 1012-1017. doi:10.1007/s13197-011-0601-zMatias, M. de F. O., Oliveira, E. L. de, Gertrudes, E., & MagalhĂŁes, M. M. dos A. (2005). Use of fibres obtained from the cashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment of food products. Brazilian Archives of Biology and Technology, 48(spe), 143-150. doi:10.1590/s1516-89132005000400018Larrauri, J. A., RupĂ©rez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango Peels as a New Tropical Fibre: Preparation and Characterization. LWT - Food Science and Technology, 29(8), 729-733. doi:10.1006/fstl.1996.0113Martin-Cabrejas, M. A., Esteban, R. M., Lopez-Andreu, F. J., Waldron, K., & Selvendran, R. R. (1995). Dietary Fiber Content of Pear and Kiwi Pomaces. Journal of Agricultural and Food Chemistry, 43(3), 662-666. doi:10.1021/jf00051a020Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112Campbell, G.; Ross, M.; Motoi, L. Expansion capacity of bran-enriched doughs in different scales of laboratory mixers. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 323–336.Cauvain, S.; Chamberlain, N.; Collins, T.; Davies, J. The distribution of dietary fibre and baking quality among mill fractions of CBP flour. FMBRA Report No, 1983, 5.Galliard, T., & Collins, A. D. (1988). Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. Journal of Cereal Science, 8(2), 139-146. doi:10.1016/s0733-5210(88)80024-9Galliard, T., & Gallagher, D. M. (1988). The effects of wheat bran particle size and storage period on bran flavour and baking quality of bran/flour blends. Journal of Cereal Science, 8(2), 147-154. doi:10.1016/s0733-5210(88)80025-0Gan, Z., Ellis, P. R., Vaughan, J. G., & Galliard, T. (1989). Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread microstructure. Journal of Cereal Science, 10(2), 81-91. doi:10.1016/s0733-5210(89)80037-2Gan, Z., Galliard, T., Ellis, P. R., Angold, R. E., & Vaughan, J. G. (1992). Effect of the outer bran layers on the loaf volume of wheat bread. Journal of Cereal Science, 15(2), 151-163. doi:10.1016/s0733-5210(09)80066-0Wootton, M., & Shams-Ud-Din, M. (1986). The effects of aqueous extraction on the performance of wheat bran in bread. Journal of the Science of Food and Agriculture, 37(4), 387-390. doi:10.1002/jsfa.2740370409Zhang, D., & Moore, W. R. (1997). Effect of Wheat Bran Particle Size on Dough Rheological Properties. Journal of the Science of Food and Agriculture, 74(4), 490-496. doi:10.1002/(sici)1097-0010(199708)74:43.0.co;2-0Gan, Z., Ellis, P. R., & Schofield, J. D. (1995). Gas Cell Stabilisation and Gas Retention in Wheat Bread Dough. Journal of Cereal Science, 21(3), 215-230. doi:10.1006/jcrs.1995.0025Zhang, D., & Moore, W. R. (1999). Wheat bran particle size effects on bread baking performance and quality. Journal of the Science of Food and Agriculture, 79(6), 805-809. doi:10.1002/(sici)1097-0010(19990501)79:63.0.co;2-eCADDEN, A.-M. (1987). Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 52(6), 1595-1599. doi:10.1111/j.1365-2621.1987.tb05886.xCADDEN, A.-M. (1988). Moisture Sorption Characteristics of Several Food Fibers. Journal of Food Science, 53(4), 1150-1155. doi:10.1111/j.1365-2621.1988.tb13550.xLaurikainen, T., HĂ€rkönen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched baking. Journal of the Science of Food and Agriculture, 76(2), 239-249. doi:10.1002/(sici)1097-0010(199802)76:23.0.co;2-lCampbell, G.; Ross, M.; Motoi, L. Bran in bread: Effects of particle size and level of wheat and oat bran on mixing, proving and baking. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 337–354.Sivam, A. S., Sun-Waterhouse, D., Quek, S., & Perera, C. O. (2010). Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. Journal of Food Science, 75(8), R163-R174. doi:10.1111/j.1750-3841.2010.01815.xAnil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. Journal of Food Engineering, 80(1), 61-67. doi:10.1016/j.jfoodeng.2006.05.003Chang, R.-C., Li, C.-Y., & Shiau, S.-Y. (2016). Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech Journal of Food Sciences, 33(No. 2), 180-185. doi:10.17221/496/2014-cjfsMASOODI, F. A., & CHAUHAN, G. S. (1998). USE OF APPLE POMACE AS A SOURCE OF DIETARY FIBER IN WHEAT BREAD. Journal of Food Processing and Preservation, 22(4), 255-263. doi:10.1111/j.1745-4549.1998.tb00349.xO’Shea, N., RĂ¶ĂŸle, C., Arendt, E., & Gallagher, E. (2015). Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chemistry, 166, 223-230. doi:10.1016/j.foodchem.2014.05.157Rosell, C. M., Santos, E., & Collar, C. (2005). Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. European Food Research and Technology, 223(3), 333-340. doi:10.1007/s00217-005-0208-6Walker, R., Tseng, A., Cavender, G., Ross, A., & Zhao, Y. (2014). Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science, 79(9), S1811-S1822. doi:10.1111/1750-3841.12554BaƟman, A., & Köksel, H. (1999). Properties and Composition of Turkish Flat Bread (Bazlama) Supplemented with Barley Flour and Wheat Bran. Cereal Chemistry Journal, 76(4), 506-511. doi:10.1094/cchem.1999.76.4.506Waghmare, A. G., & Arya, S. S. (2013). Use of Fruit By-Products in the Preparation of HypoglycemicThepla: Indian Unleavened Vegetable Flat Bread. Journal of Food Processing and Preservation, 38(3), 1198-1206. doi:10.1111/jfpp.12080Barnes, P. J., & Lowy, G. D. A. (1986). The effect on baking quality of interaction between milling fractions during the storage of wholemeal flour. Journal of Cereal Science, 4(3), 225-232. doi:10.1016/s0733-5210(86)80024-8De Kock, S., Taylor, J., & Taylor, J. R. . (1999). Effect of Heat Treatment and Particle Size of Different Brans on Loaf Volume of Brown Bread. LWT - Food Science and Technology, 32(6), 349-356. doi:10.1006/fstl.1999.0564Nelles, E. M., Randall, P. G., & Taylor, J. R. N. (1998). Improvement of Brown Bread Quality by Prehydration Treatment and Cultivar Selection of Bran. Cereal Chemistry Journal, 75(4), 536-540. doi:10.1094/cchem.1998.75.4.536Doehlert, D. C., & Moore, W. R. (1997). Composition of Oat Bran and Flour Prepared by Three Different Mechanisms of Dry Milling. Cereal Chemistry Journal, 74(4), 403-406. doi:10.1094/cchem.1997.74.4.403Rocha Parra, A. F., Ribotta, P. D., & Ferrero, C. (2014). Apple pomace in gluten-free formulations: effect on rheology and product quality. International Journal of Food Science & Technology, 50(3), 682-690. doi:10.1111/ijfs.12662PATERAS, I. M. C., HOWELLS, K. F., & ROSENTHAL, A. J. (1994). Hot-stage Microscopy of Cake Batter Bubbles during Simulated Baking: Sucrose Replacement by Polydextrose. Journal of Food Science, 59(1), 168-170. doi:10.1111/j.1365-2621.1994.tb06925.xCauvain, S. P., & Young, L. S. (Eds.). (2006). Baked Products. doi:10.1002/9780470995907Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010Grigor, J. M., Brennan, C. S., Hutchings, S. C., & Rowlands, D. S. (2015). The sensory acceptance of fibre-enriched cereal foods: a meta-analysis. International Journal of Food Science & Technology, 51(1), 3-13. doi:10.1111/ijfs.13005WANG, H. J., & THOMAS, R. L. (1989). Direct Use of Apple Pomace in Bakery Products. Journal of Food Science, 54(3), 618-620. doi:10.1111/j.1365-2621.1989.tb04665.xMasoodi, F. A., Sharma, B., & Chauhan, G. S. (2002). Plant Foods for Human Nutrition, 57(2), 121-128. doi:10.1023/a:1015264032164Sudha, M. L., Indumathi, K., Sumanth, M. S., Rajarathnam, S., & Shashirekha, M. N. (2015). Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. Journal of Food Measurement and Characterization, 9(3), 382-388. doi:10.1007/s11694-015-9246-3Romero-Lopez, M. R., Osorio-Diaz, P., Bello-Perez, L. A., Tovar, J., & Bernardino-Nicanor, A. (2011). Fiber Concentrate from Orange (Citrus sinensis L.) Bagase: Characterization and Application as Bakery Product Ingredient. International Journal of Molecular Sciences, 12(4), 2174-2186. doi:10.3390/ijms12042174Mildner-Szkudlarz, S., Siger, A., Szwengiel, A., & Bajerska, J. (2015). Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chemistry, 172, 78-85. doi:10.1016/j.foodchem.2014.09.036RodrĂ­guez-GarcĂ­a, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012RodrĂ­guez-GarcĂ­a, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-zKhalil, A. H. (1998). Plant Foods for Human Nutrition, 52(4), 299-313. doi:10.1023/a:1008096031498Matsakidou, A., Blekas, G., & Paraskevopoulou, A. (2010). Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Science and Technology, 43(6), 949-957. doi:10.1016/j.lwt.2010.02.002Sikorski, Z.E.; Sikorska-Wiƛniewska, G. The role of lipids in food quality. InImproving the fat content of foods. Williams, C., Buttriss, J., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp 213–235.Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. doi:10.1111/j.1365-2621.2010.02444.xGrigelmo-Miguel, N., Carreras-Boladeras, E., & MartĂ­n-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. doi:10.1177/108201301772660484Al-Sayed, H. M. A., & Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58(1), 83-95. doi:10.1016/j.aoas.2013.01.012Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78(3), 953-964. doi:10.1016/j.jfoodeng.2005.11.034Hicsasmaz, Z., Yazgan, Y., Bozoglu, F., & Katnas, Z. (2003). Effect of polydextrose-substitution on the cell structure of the high-ratio cake system. LWT - Food Science and Technology, 36(4), 441-450. doi:10.1016/s0023-6438(03)00038-0Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617Zahn, S., Forker, A., KrĂŒgel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001KohajdovĂĄ, Z., KarovičovĂĄ, J., Magala, M., & KuchtovĂĄ, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1Rosell, C. ., Rojas, J. ., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:10.1016/s0268-005x(00)00054-0Mildner-Szkudlarz, S., Bajerska, J., Zawirska-Wojtasiak, R., & GĂłrecka, D. (2012). White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. Journal of the Science of Food and Agriculture, 93(2), 389-395. doi:10.1002/jsfa.5774Srivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827-833. doi:10.3109/09637486.2014.937797Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., & Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101(14), 5414-5418. doi:10.1016/j.biortech.2010.02.022Larrea, M. ., Chang, Y. ., & Martı́nez Bustos, F. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89(2), 301-308. doi:10.1016/j.foodchem.2004.02.037Jung, J., Cavender, G., & Zhao, Y. (2014). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52(9), 5568-5578. doi:10.1007/s13197-014-1680-4Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C., Gambacorta, G., & Caponio, F. (2014). Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Research International, 65, 385-393. doi:10.1016/j.foodres.2014.07.014CARSON, K. J., COLLINS, J. L., & PENFIELD, M. P. (1994). Unrefined, Dried Apple Pomace as a Potential Food Ingredient. Journal of Food Science, 59(6), 1213-1215. doi:10.1111/j.1365-2621.1994.tb14679.xUysal, H., Bilgiçli, N., ElgĂŒn, A., Ä°banoğlu, ƞ., Herken, E. N., & KĂŒrƟat Demir, M. (2007). Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. Journal of Food Engineering, 78(3), 1074-1078. doi:10.1016/j.jfoodeng.2005.12.019Özboy-ÖzbaƟ, Ö., Seker, I. T., & Gökbulut, I. (2010). Effects of resistant starch, apricot kernel flour, and fiber-rich fruit powders on low-fat cookie quality. Food Science and Biotechnology, 19(4), 979-986. doi:10.1007/s10068-010-0137-4Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and ÎČ-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science & Technology, 44(6), 1263-1271. doi:10.1111/j.1365-2621.2009.01956.xKarkle, E. L., Keller, L., Dogan, H., & Alavi, S. (2012). Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. Journal of Food Engineering, 108(1), 171-182. doi:10.1016/j.jfoodeng.2011.06.020MĂ€kilĂ€, L., Laaksonen, O., Ramos Diaz, J. M., VahvaselkĂ€, M., MyllymĂ€ki, O., LehtomĂ€ki, I., 
 Kallio, H. (2014). Exploiting blackcurrant juice press residue in extruded snacks. LWT - Food Science and Technology, 57(2), 618-627. doi:10.1016/j.lwt.2014.02.005Yağcı, S., & GĂ¶ÄŸĂŒĆŸ, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86(1), 122-132. doi:10.1016/j.jfoodeng.2007.09.018Paraman, I., Sharif, M. K., Supriyadi, S., & Rizvi, S. S. H. (2015). Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, 96, 78-85. doi:10.1016/j.fbp.2015.07.003Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10-21. doi:10.1016/j.foodres.2011.11.003Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of Extrusion Cooking on Functional Properties andin vitroStarch Digestibility of Barley-Based Extrudates from Fruit and Vegetable By-Products. Journal of Food Science, 74(2), E77-E86. doi:10.1111/j.1750-3841.2009.01051.xAltan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24-32. doi:10.1016/j.jfoodeng.2008.03.025DroĆŒdĆŒ, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Polish Journal of Chemical Technology, 16(3), 7-11. doi:10.2478/pjct-2014-0042GUMUL, D., ZIOBRO, R., ZIĘBA, T., & RÓJ, E. (2011). THE INFLUENCE OF ADDITION OF DEFATTED BLACKCURRANT SEEDS ON PRO-HEALTH CONSTITUENTS AND TEXTURE OF CEREAL EXTRUDATES. Journal of Food Quality, 34(6), 395-402. doi:10.1111/j.1745-4557.2011.00418.xKhanal, R. C., Howard, L. R., Brownmiller, C. R., & Prior, R. L. (2009). Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. Journal of Food Science, 74(2), H52-H58. doi:10.1111/j.1750-3841.2009.01063.xKhanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin Content of Grape Seed and Pomace, and Total Anthocyanin Content of Grape Pomace as Affected by Extrusion Processing. Journal of Food Science, 74(6), H174-H182. doi:10.1111/j.1750-3841.2009.01221.xHirth, M., Lei

    CMB with Quintessence: Analytic Approach and CMBFAST

    Get PDF
    A particular kind of quintessence is considered, with equation of motion pQ/ρQ=−1p_Q/\rho_Q = -1, corresponding to a cosmological term with time-dependence Λ(t)=Λ(t0)(R(t0)/R(t))P\Lambda(t) = \Lambda(t_0) (R(t_0)/R(t))^{P} which we examine initially for 0≀P<30 \leq P < 3. Energy conservation is imposed, as is consistency with big-bang nucleosynthesis, and the range of allowed PP is thereby much restricted to 0≀P<0.20 \leq P < 0.2. The position of the first Doppler peak is computed analytically and the result combined with analysis of high-Z supernovae to find how values of Ωm\Omega_m and ΩΛ\Omega_{\Lambda} depend on PP. Some comparison is made to the CMBFAST public code.Comment: 13 pp LaTeX and 7 postscript figure
    • 

    corecore