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Abstract

The purpose of the Cosmic Background Radiation (CBR) experiments is to

measure the temperature anisotropy via the autocorrelation function. The

partial wave l1 corresponding to the first Doppler peak caused by baryon-

photon oscillations at the surface of last scattering depends on the present

density Ω0 and the cosmological constant contribution ΩΛ. We discuss this

dependence on the basis of perspicuous figures.
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I. CBR TEMPERATURE ANISOTROPY.

Although the Cosmic Background Radiation (CBR) was first discovered over thirty years

ago [1], the detection of its temperature anisotropy waited until 1992 when the Cosmic

Background Explorer (COBE) satellite provided its impressive experimental support [2,3] for

the Big Bang model. In particular, the COBE results were consistent with a scale-invariant

spectrum of primordial scalar density perturbations [4–7] such as might be generated by

quantum fluctuations during an inflationary period. [8–10]

This discovery of temperature anisotropy in the CBR has inspired many further exper-

iments which will be sensitive to smaller angle anisotropies than the COBE satellite was

(about 1o). NASA has approved the flight of a satellite mission, the Microwave Anisotropy

Probe (MAP) in the year 2000 and ESA has agreed to a more accurate later experiment

called the Planck Surveyor. The expected precision of these measurements implies that the

angular dependence of the temperature anisotropy will be known sufficiently well that the

location of the first accoustic (Doppler) peak, and possibly subsequent ones, will be resolved.

Although the hot big bang theory is supported by at least three major triumphs: the

expansion of the universe, the cosmic background radiation and the nucleosynthesis calcu-

lations, it leaves unanswered several questions. The most important unanswered questions

are the horizon and flatness issues.

When the CBR last scattered, the age of the universe was about 100,000 years compared

to its present age of some 10 billion years. As we shall see, the horizon size at the recombi-

nation time subtends now an angle of about (1/208) of π radians. On the celestial sphere

there are therefore approximately 40,000 causally disconnected regions. Nevertheless, these

different regions have a uniform CBR temperature to an accuracy of better than one part

in 105. This is the horizon problem.

The flatness problem may be understood from the cosmological equation

k

R2
= (Ω− 1)

Ṙ2

R2
(1)
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Evaluating Eq.(1) at an arbitrary time t and dividing by the same relation at the present

time t = t0 and using R ∼
√
t ∼ T−1 gives

(Ω− 1) = 4H2
0 t

2T
2

T 2
0

(Ω0 − 1) (2)

For high densities we write

Ṙ2

R2
=

8πGρ

3
=

8πGgaT 4

6
(3)

where a is the radiation constant and g is the effective number of degrees of freedom.

This leads to the relation between time and temperature, after substituting the numerical

values [a = 7.56 × 10−9ergm−3K−4;G/c2 = 0.742 × 10−30m/g;H0 = 100h0km/s/Mpc =

3.25× 10−18h0s
−1]

t(seconds) = (2.42× 10−6)g−1/2T−2
GeV (4)

Combining Eq.(2) with Eq.(4) leads to

(Ω− 1) = 3.64× 10−21h2
0g

−1T−2
GeV (Ω0 − 1) (5)

Given the proximity of Ω0 to unity, we then deduce that Ω at, for example, T = 1MeV (t ∼

1second) must be equal to one within one part in 1014! Otherwise the resultant cosmology

will be incompatible with the present situation of our universe. This extraordinary fine-

tuning is the flatness problem.

The goal [11–17] of the CBR experiments is to measure the temperature autocorrela-

tion function. The fractional temperature perturbation as a function of the direction n̂ is

expanded in spherical harmonics

∆T (n̂)

T
=
∑

lm

a(lm)Ylm(n̂) (6)

and the statistical isotropy and homogeneity of the universe imply that the coefficients have

expectation values

< (a(lm))
∗a(l′m′) >= Clδll′δmm′ (7)
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The plot of Cl versus l is expected to reflect oscillations in the baryon-photon fluid at

the surface of last scatter. In particular, the first Doppler peak should be at the postion

l1 = π/∆θ where ∆θ is the angle now subtended by the horizon at the time of the last

scattering, namely the recombination time corresponding to a red shift zt ∼ 1, 100.

The horizon and flatness problems described above can both be solved by the inflation

scenario which has the further prediction that Ω0 = 1 if the cosmological constant vanishes

or more generally that Ω0 + ΩΛ = 1 if the cosmological constant does not vanish.

The question we address here is restricted to the question of how much the value of l1

alone - likely to be accurately determined in the next few years - will tell us about the values

of the cosmic parameters Ω0 and ΩΛ?

In Section 2, the case Λ = 0 is discussed. In Section 3, there is the more general case;

and finally in Section 4 there is discussion of the Figures derived.
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II. THE SPECIAL CASE Λ = 0, 0 < Ω0 < 1

When the cosmological constant vanishes, the Einstein-Friedmann cosmological equa-

tions can be solved analytically (not the case, in general, when Λ 6= 0). So we shall begin

by doing this special case explicitly. It gives rise to the well-known result that the position

of the first Doppler peak (partial wave l1) expected in the partial-wave analysis depending

on the present matter-energy density Ω0 (for Λ = 0) according to l1 ∼ 1/
√
Ω0 [13,17]. We

shall show in the next section how in the general case with Λ 6= 0 there is a rather serious

”comic confusion” in disentangling the value of Ω0 from the position l1 of the first Doppler

peak.

Let us use the metric:

ds2 = dt2 − R2[dΨ2 + sinh2Ψdθ2 + sinh2Ψsin2θdφ2] (8)

For a geodesic ds2 = 0 and, in particular,

dΨ

dt
=

1

R
(9)

Einstein’s equation reads

(

Ṙ

R

)2

=
8π

3
Gρ+

1

R2
(10)

where we take curvature k = −1. Let us define:

Ω0 =
8πGρ0
3H2

0

; ρ = ρ0

(

R0

R

)3

; a = Ω0H
2
0R

3
0 (11)

Then from Eq.(10) we find that

Ṙ2R2 = R2 + aR (12)

and so it follows that

dΨ

dR
=

dΨ

dt

(

dR

dt

)

−1

=
1

ṘR
=

1√
R2 + aR

(13)

Since Ψ0 = 0, the value at time t can be computed from the integral

5



Ψt =
∫ R0

Rt

dR
√

(R + a/2)2 − (a/2)2
(14)

This can be performed easily with the substitution R = 1
2
a(coshV − 1) to give the result:

Ψt = cosh−1
(

2R0

a
+ 1

)

− cosh−1
(

2Rt

a
+ 1

)

(15)

¿From Eq.(10) evaluated at t = t0 we see that

1

a
=

1− Ω0

R0Ω0
(16)

and so, using sinh(cosh−1x) =
√
x2 − 1 in Eq.(15) gives now

sinhΨt =







√

√

√

√

(

2(1− Ω0)

Ω0

+ 1

)2

− 1







(

2Rt

a
+ 1

)

−







√

√

√

√

(

2(1− Ω0)Rt

Ω0R0

+ 1

)2

− 1







(

2R0

a
+ 1

)

(17)

The position of the first Doppler peak depends on the angle subtended by the horizon size

at the time t equal to the recombination time. This corresponds to the distance (Ht)
−1.

According to the metric of Eq.(8) the angle subtended is

∆θ =
1

HtRtsinhΨt
(18)

and the position of the first Doppler peak corresponds to the partial wave l1 given by

l1 =
π

∆θ
= πHtRtsinhΨt (19)

Now the red-shift at recombination is about zt = 1100 ≃ (R0/Rt) ≫ 1 so we may approxi-

mate in Eq.(17) to find

sinhΨt ≃
2
√
1− Ω0

Ω0

(20)

Using H2
t = 8πGρ/3 + 1/R2 ≃ Ω0H

2
0 (R0/Rt)

3 gives

l1(Λ = 0) =
2π√
Ω0

z
1/2
t (21)

In particular, if Ω0 = 1 and Λ = 0, one has l1 ≃ 208.4. If l1 does have this value empirically

it will favor this simplest choice, although as we shall see in the following subsection even

here the conclusion has ambiguities.

In Fig. 1 we plot l1 versus Ω0 for the particular case of ΩΛ = 0.
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III. THE GENERAL CASE: 0 ≤ Ω0 < 2; 0 ≤ ΩΛ < 1

For the general case of 0 ≤ ΩΛ < 2; 0 < Ω0 < 1 we use the more general Einstein

cosmological equation:

Ṙ2R2 = −kR2 + aR + ΛR4/3 (22)

where a = Ω0H
2
0R

3
0. We define

Ω0 =
8πGρ0
3H2

0

; ΩΛ =
Λ

3H2
0

; ΩC =
−k

H2
0R

2
0

(23)

Substituting R = R0r and w = 1/r now gives rise to the integral [18] for Ψt

Ψt =
√

ΩC

∫

∞

1

dw√
ΩΛ + ΩCw2 + Ω0w3

(24)

in which ΩΛ + ΩC + Ω0 = 1.

Consider first the case of an open universe ΩC > 0. Then

l1 = πHtRtsinhΨt (25)

We know that

H2
t =

(

Ṙt

Rt

)2

=
8πGρ

3
+

Λ

3
+

1

R2
t

= H2
0

[

Ω0

(

R0

Rt

)3

+ ΩΛ +
(

R0

Rt

)2

ΩC

]

(26)

Since R0 ≫ Rt we may approximate:

Ht ≃
(

R0

Rt

)3/2

H0

√

Ω0 (27)

and hence

HtRt =
(

R0

Rt

)1/2
√

Ω0

ΩC
(28)

It follows that for this case ΩC > 0 that

l1 = π

√

Ω0

ΩC

(

R0

Rt

)1/2

sinh

(

√

ΩC

∫

∞

1

dw√
ΩΛ + ΩCw2 + Ω0w3

)

(29)
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For the case ΩC < 0(k = +1) we simply replace sinh by sin in Eq. (29). Finally, for the

special case ΩC = 0, the generalized flat case favored by inflationary cosmologies, Eq.(29)

simplifies to:

l1 = π
√

Ω0

(

R0

Rt

)1/2 ∫
∞

1

dw√
ΩΛ + Ω0w3

(30)

In Fig. 2 we plot the value of l1 versus Ω0 for the case ΩC = 0 (flat spacetime). The contrast

with Fig 1 is clear: whereas l1 increases with decreasing Ω0 when ΩΛ = 0 (Fig. 1) the

opposite behaviour occurs when we constrain ΩΛ = 1− Ω0 (fig.2).

With Ω0 and ΩΛ unrestricted there are more general results. In Fig. 3, we dis-

play iso-l lines on a Ω0 − ΩΛ plot. The iso-l lines are (from right to left) for the val-

ues l1 = 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270 respectively. One can see

that from the position(l1) only of the first Doppler peak there remains a serious ambiguity

of interpretation without further information.

In Fig, 4, there is a three dimensional rendition of the value of l1 versus the two variables

Ω0 and ΩΛ.
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IV. DISCUSSION OF COSMIC PARAMETER AMBIGUITIES.

Let us now turn to an interpretation of our Figures, from the point of view of determining

the cosmic parameters.

In the case where Λ = ΩΛ = 0, Fig.1. is sufficient. In this case, there is the well-known

dependence [13,17] l1 = (208.4)/
√
Ω0 illustrated in Fig.1. It would be straightforward to

determine Ω0 with an accuracy of a few percent from the upcoming measurements.

Of course there is a strong theoretical prejudice towards Λ = 0. But no underlying

symmetry principle is yet known. If ΩΛ 6= 0, one knows that it is not bigger than order one;

this is very many orders of magnitude smaller than expected [19] from the vacuum energy

arising in spontaneous breaking of symmetries such as the electroweak group SU(2)×U(1).

Nevertheless, recent observations of high redshift Type 1a supernovae have led to the

suggestion of an increasing Hubble parameter [20,21]. An interpretation of this is that

the cosmological constant is non-zero, possibly ΩΛ ≃ 0.7 but is still consistent with Ω0 =

1−ΩΛ. It should be added that these conclusions are quite controversial and await further

verification. But these results are enough to motivate a full consideration of non-zero values

of ΩΛ.

Thus we come to Fig. 2 which depicts the Ω0 dependence of l1 when Ω0+ΩΛ = 1 is held

fixed as in a generalized flat cosmology that could arise from inflation. We notice that here

l1 decreases as Ω0 decreases from Ω0 = 1, the opposite behaviour to Fig. 1. Thus even the

sign of the shift of l1 from l1 = 208.4 depends on the size of Λ.

It is therefore of interest to find what are the contours of constant l1 in the Ω0 − ΩΛ

plane. These iso-l lines are shown in Fig. 3 for l1 = 150, ...., 270 in increments ∆l1 = 10.

If we focus on the l1 = 210 contour (the seventh contour from the left in Fig. 3) as an

example, we see that while this passes close to the Ω0 = 1,Λ = 0 point it also tracks out a

line naturally between those shown in Figs. 1 and 2 (actually somewhat closer to the latter

than the former).

Finally, Fig. 4 gives a three-dimensional rendition which includes Figures 1 to 3 as special
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cases and provides a visualisation of the full functional dependence of l1(Ω0,ΩΛ).

Our main conclusion is that the position l1 of the first Doppler peak will define the

correct contour in our iso-l plot, Fig. 3. More information will be necessary to determine

Ω0 and the validity of inflation.

We thank Eric Carlson of Wake Forest University for useful discussions, and Masayasu

Harada for help. This work was supported in part by the US Department of energy under

Grant No. DE-FG05-85ER-40219.

Note Added.

After completing this paper, three very recent papers having some overlap with our work

were brought to our attention:

M. White. astro-ph/9802295; M. Tegmark, D.J. Eisenstein, W. Hu and R.G. Kron.

astro-ph/9805117; C.H. Lineweaver. astro-ph/9805326.
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Figure Captions.

Fig 1. Plot of l1 vs. Ω0 for ΩΛ = 0.

Fig. 2. l1 vs. Ω0 for the case ΩΛ = 1− Ω0.

Fig. 3. Iso-l lines on Ω0 − ΩΛ plot, for (from right to left)

l1 = 150 through 270 in increments ∆l = 10. Horizontal = Ω0, Vertical = ΩΛ.

Fig. 4. Three-dimensional plot of l1 against Ω0 and ΩΛ. Front = ΩΛ, Right = Ω0.

12

http://arxiv.org/abs/astro-ph/9803168
http://arxiv.org/abs/astro-ph/9712212
http://arxiv.org/abs/astro-ph/9608192


FIGURES

0.2 0.4 0.6 0.8 1

1000

2000

3000

4000

Figure 1.

13



0.5 1 1.5 2

100

120

140

160

180

200

220

Figure 2.

14



0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

Figure 3.

15



0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0

200

400

600

0.2

0.4

0.6

0.8

Figure 4.

16


