415 research outputs found

    Galaxy And Mass Assembly (GAMA): curation and reanalysis of 16.6k redshifts in the G10/COSMOS region

    Get PDF
    We discuss the construction of the Galaxy And Mass Assembly (GAMA) 10h region (G10) using publicly available data in the Cosmic Evolution Survey region (COSMOS) in order to extend the GAMA survey to z ∟ 1 in a single deg2 field. In order to obtain the maximum number of high precision spectroscopic redshifts we re-reduce all archival zCOSMOS-bright data and use the GAMA automatic cross-correlation redshift fitting code autoz. We use all available redshift information (autoz, zCOSMOS-bright 10k, PRIMUS, VVDS, SDSS and photometric redshifts) to calculate robust best-fitting redshifts for all galaxies and visually inspect all 1D and 2D spectra to obtain 16 583 robust redshifts in the full COSMOS region. We then define the G10 region to be the central ∟1 deg2 of COSMOS, which has relatively high spectroscopic completeness, and encompasses the CHILES VLA region. We define a combined r < 23.0 mag and i < 22.0 mag G10 sample (selected to have the highest bijective overlap) with which to perform future analysis, containing 9861 sources with reliable high-precision VLT-VIMOS spectra. All tables, spectra and imaging are available at http://ict.icrar.org/cutout/G10

    Peer mentorship and positive effects on student mentor and mentee retention and academic success

    Get PDF
    This study examined how the introduction of peer mentorship in an undergraduate health and social welfare programme at a large northern university affected student learning. Using an ethnographic case study approach, the study draws upon data collected from a small group of mentors and their mentees over a period of one academic year using interviews, reflective journals, assessment and course evaluation data. Analysis of the data collected identified a number of key findings: peer mentorship improves assessment performance for both mentee and mentor; reduces stress and anxiety, enhances participation and engagement in the academic community, and adds value to student outcomes

    GAMA/G10-COSMOS/3D-HST : evolution of the galaxy stellar mass function over 12.5 Gyr

    Get PDF
    Using a combined and consistently analysed GAMA, G10-COSMOS, and 3D-HST data set, we explore the evolution of the galaxy stellar mass function over lookback times tL ∈ [0.2, 12.5] h70-1 Gyr. We use a series of volume-limited samples to fit Schechter functions in bins of ~constant lookback time and explore the evolution of the best-fitting parameters in both single and two-component cases. In all cases, we employ a fitting procedure that is robust to the effects of Eddington bias and sample variance. Surprisingly, when fitting a two-component Schechter function, we find essentially no evidence of temporal evolution in M*, the two ι slope parameters, or the normalization of the low-mass component. Instead, our fits suggest that the various shape parameters have been exceptionally stable over cosmic time, as has the normalization of the low-mass component, and that the evolution of the stellar mass function is well described by a simple build-up of the high-mass component over time. When fitting a single component Schechter function, there is an observed evolution in both M* and ι however, this is interpreted as being an artefact. Finally, we find that the evolution of the stellar mass function, and the observed stellar mass density, can be well described by a simple model of constant growth in the high-mass source density over the last 11 h70-1 Gyr.Publisher PDFPeer reviewe

    Measurements of extragalactic background light from the far UV to the far IR from deep ground- and space-based galaxy counts

    Get PDF
    Funding: Australian Research Council via Discovery Project DP130103505 (SPD).We combine wide and deep galaxy number-count data from the Galaxy And Mass Assembly, COSMOS/G10, Hubble Space Telescope (HST) Early Release Science, HST UVUDF, and various near-, mid-, and far-IR data sets from ESO, Spitzer, and Herschel. The combined data range from the far UV (0.15 μm) to far-IR (500 μm), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated IGL in all bands. We argue that undetected low-surface-brightness galaxies and intracluster/group light are modest, and that our extrapolated-IGL measurements are an accurate representation of the extragalactic background light (EBL). Our data agree with most earlier IGL estimates and with direct measurements in the far IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC) suggests that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted model of zodiacal light. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the cosmic optical background (COB) and cosmic infrared background of 24+4-4 nW m−2sr−1 and 26+5-5 nW m−2sr−1 respectively (48%:52%). Over the next decade, upcoming space missions such as Euclid and the Wide Field Infrared Space Telescope will have the capacity to reduce the COB error to <1%, at which point comparisons to the very high-energy data could have the potential to provide a direct detection and measurement of the reionization field.Publisher PDFPeer reviewe

    Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    Get PDF
    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s−1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter ‘Ef’ classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys
    • …
    corecore