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ABSTRACT
Using a combined and consistently analysed GAMA, G10-COSMOS, and 3D-HST data
set, we explore the evolution of the galaxy stellar mass function over lookback times tL ∈
[0.2, 12.5] h−1

70 Gyr. We use a series of volume-limited samples to fit Schechter functions
in bins of ∼constant lookback time and explore the evolution of the best-fitting parameters
in both single and two-component cases. In all cases, we employ a fitting procedure that
is robust to the effects of Eddington bias and sample variance. Surprisingly, when fitting a
two-component Schechter function, we find essentially no evidence of temporal evolution in
M�, the two α slope parameters, or the normalization of the low-mass component. Instead,
our fits suggest that the various shape parameters have been exceptionally stable over cosmic
time, as has the normalization of the low-mass component, and that the evolution of the stellar
mass function is well described by a simple build-up of the high-mass component over time.
When fitting a single component Schechter function, there is an observed evolution in both
M� and α; however, this is interpreted as being an artefact. Finally, we find that the evolution
of the stellar mass function, and the observed stellar mass density, can be well described by a
simple model of constant growth in the high-mass source density over the last 11 h−1

70 Gyr.

Key words: galaxies: evolution – galaxies: luminosity function, mass function – galaxies: stel-
lar content.

1 IN T RO D U C T I O N

Understanding the redshift evolution of galactic properties is a fun-
damental method for understanding the growth and evolution of
structure over cosmic times. These studies typically explore inte-
grated galaxy parameters such as galaxy number density (ϕ, e.g.
Conselice et al.

2016), stellar mass density (ρ�, e.g. Madau & Dickinson 2014),
galaxy population morphological parameters such as the early-type
fraction (e.g. Davidzon et al. 2017), individual galaxy evolution
parameters such as star formation rates (Driver et al. 2017), en-
vironmental parameters such as the galaxy two-point correlation
function (e.g. Croom et al. 2005; Zheng, Coil & Zehavi 2007) and
merger rate (e.g. Bridge, Carlberg & Sullivan 2010), and formation
parameters such as the galaxy halo mass function (e.g. Moster et al.
2010). All of these parameters encode complex physics about the
formation and growth of galaxies over time.

The integrated galaxy stellar mass density is of particular interest
as it can be directly compared to the integrated cosmic star forma-
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tion history (see Madau & Dickinson 2014 for an extensive review
of such studies). Over the last decade, deep near-infrared surveys
such as the Great Observatories Origins Deep Survey (GOODS; Gi-
avalisco et al. 2004), the MUlti-wavelength Survey by Yale-Chile
(MUSYC; Gawiser et al. 2006), the Cosmic Assembly Near-infrared
Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011;
Koekemoer et al. 2011), the Cosmic Evolution Survey (COSMOS;
Scoville et al. 2007), and the FourStar Galaxy Evolution Survey
(ZFOURGE; Tomczak et al. 2014) have made studying the prop-
erties of high redshift galaxies increasingly accessible to the astro-
nomical community. Meanwhile, large multiwavelength surveys of
the low-redshift Universe such as the Galaxy And Mass Assembly
(Driver et al. 2011, 2016b), the 2dF Galaxy Redshift Survey (Cole
et al. 2001), and Sloan Digital Sky Survey (Bell et al. 2003) have
allowed us to explore galaxy properties with high statistical accu-
racy out to redshifts of ∼0.5. By combining data sets from these
two classes of surveys, we are able to create combined samples
that allow us to explore, with high number statistics throughout, the
evolution of galactic parameters over a vast redshift range.

In this work, we explore the evolution of the shape of the galaxy
stellar mass function (GSMF) using a combination of surveys. In
Section 2, we describe the data set used here. In Section 3, we
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describe the parametrization of the GSMF and the fitting methods
employed. In Section 4, we present the results of our analysis, with
a discussion of the implications of our fits in Section 5, and in
Section 6 we provide some concluding remarks.

Throughout this work, we use a concordance cosmological
model of �M = 0.3, �� = 0.7, H0 = 70 km s−1 Mpc−1, and
h70 = H0/70 km s−1 Mpc−1. All masses are derived/quoted using a
time-invariant Chabrier (2003) initial mass function, Bruzual &
Charlot (2003) population synthesis models, and a Charlot &
Fall (2000) dust model. All magnitudes are presented in the AB
system.

2 DATA

In this paper, we use the combined GAMA (Driver et al. 2009;
2011; 2017), G10-COSMOS (Davies et al. 2015; Andrews et al.
2017), and 3D-HST (Brammer et al. 2012; Skelton et al. 2014;
Momcheva et al. 2016) data set described in Driver et al. (2017).
The data set combines these three highly complementary surveys
that comprehensively sample the low-, mid-, and high-redshift Uni-
verse, respectively. Importantly, each data set has been analysed in
a consistent way, making this data set somewhat distinct from other
large compilations of data presented and analysed in the literature
(e.g. Rodrı́guez-Puebla et al. 2017). The data set primarily com-
prises spectral energy distributions (SEDs) for all galaxies in each
of these surveys, and with this data set, Driver et al. (2017) were
able to compile a statistically representative sample of galaxies for
19 consecutive bins of redshift spanning the range z ∈ [0.02, 5.00],
which equates to lookback times of ttrav ∈ [0.28, 12.31] h−1

70 Gyr.
A full description of the data set, including a discussion of sys-

tematic effects such as redshift and magnitude completeness, is
available in Driver et al. (2017). None the less, here we provide a
brief overview of the data set, including summarizing of the meth-
ods of our photometric and SED analyses, before describing the
methods of analysis used in this work.

The GAMA and G10-COSMOS data described in Driver et al.
(2017) both utilize photometry measured using the LAMBDAR soft-
ware (Wright et al. 2016) in 21 and 22 filters, respectively. LAMBDAR

is a bespoke photometric program, which was developed specifically
to address the challenge of measuring consistent matched aperture
photometry on images that are neither seeing nor pixel matched,
while performing robust deblending, sky removal, and uncertainty
estimation. This is achieved within LAMBDAR by deblending seeing
convolved input apertures, generated independently for each input-
image pixel grid, with neighbouring galaxies and/or contaminants
in an iterative manner. Uncertainties are calculated incorporating
shot noise, robust sky estimation using per-galaxy local annuli, and
estimation of correlated noise using per-galaxy local blanks. Full
description of the processes employed by LAMBDAR can be found in
Wright et al. (2016), and the program’s application to GAMA and
G10-COSMOS can be found in Wright et al. (2016) and Andrews
et al. (2017), respectively. Photometry in the 3D-HST fields is down-
loaded from the 3D-HST website (http://3dhst.research.yale.edu),
rather than being calculated directly from the imaging using LAMB-
DAR. This represents the only part of our analysis from photometry
to final mass function estimation that involves possibly inconsis-
tent measurement methods. Our three data sets are generated from
each survey using simple optical flux limits, prior to the application
of mass limits to generate volume-complete samples. For GAMA,
G10-COSMOS, and 3D-HST, the optical selection limits are r <

19.8 mag, i ≤ 25 mag, and F814W ≤ 26.0 mag.

Prior to mass estimation, we perform an additional cleaning of ac-
tive galactic nucleus (AGN) contaminated sources within the G10-
COSMOS and 3D-HST data sets using the formalism described by
Donley et al. (2012), as these sources can lead to biases in our mass
estimates. We also reject radio-loud sources using the prescription
of Seymour et al. (2008) in the G10-COSMOS sample. Finally,
completeness of the variable-depth 3D-HST data set is verified by
comparison to deep HST number counts from the literature, and is
found to be highly complete (within expected cosmic variance) to
our adopted magnitude limit of F160W = 26.0 mag. Each of these
selections is described in detail in Driver et al. (2017).

Each of these photometric data sets is then fit using the SED
modelling program MAGPHYS (da Cunha, Charlot & Elbaz 2008) us-
ing spectroscopic redshifts (for: all GAMA, some G10-COSMOS,
some 3D-HST), GRISM redshifts (for some 3D-HST), and/or pho-
tometric redshifts (for: most G10-COSMOS, most 3D-HST). MAG-
PHYS performs an energy balance of observed stellar-origin light
with that emitted from warm dust and cold dust, in order to recover
the unobscured galaxy stellar mass from observed fluxes. For our
fits, we implement the standard MAGPHYS template library for each
data set and then perform an additional run of our 3D-HST data
set using the high-redshift MAGPHYS template set. The best-fitting
template, as determined by the template with the minimum χ2

r ,
for each 3D-HST source is then selected. In practice, 97 per cent
of the 3D-HST sources are optimally fit by a standard MAGPHYS

template.
MAGPHYS outputs per-galaxy posterior probability distributions for

each model parameter, which we then use for parameter inference.
Specifically, we use the median of the MAGPHYS posterior samples
for all parameter inferences, and use the 16th–84th percentile range
of the posterior samples to define each parameter’s uncertainty. Full
description of the application of MAGPHYS to this combined data set
is given in Driver et al. (2017).

SED measurements of the galaxies in each data set provide us
with per-galaxy estimates of the stellar mass, star formation history,
and dust mass, although in this work we focus solely on the esti-
mated stellar masses. Given the different survey areas and depths,
we can utilize these data to generate the stellar mass function over
a range of redshifts: the wide area of the GAMA survey provides
good sampling of, in particular, the high-mass end of the mass
function at low redshift, and the deep but narrow G10-COSMOS
and 3D-HST surveys provide significant information of the low-
mass end of the GSMF at low redshift. These deep studies then
transition to providing information about the higher mass end of
the mass function at high redshift. In this work, as in Driver et al.
(2017), we use only volume-complete samples of the full data set
at each redshift interval, thus significantly reducing the possible
number of systematic biases that may affect our analysis.1 Mass
completeness limits in each of the data sets have been calculated
assuming that the GSMFs exhibit no considerable downturn over
the masses probed in this work. Using this assumption-driven ap-
proach, per-data set per-bin completeness limits used in this work
were estimated by Driver et al. (2017) by truncating each data set
to masses exclusively above where a downturn in the mass func-
tion is observed. This assumption-driven approach is less rigorous

1We note that recently codes have been developed that significantly simplify
the task of performing robust analyses of non-volume limited data sets, such
as the dftools package presented by Obreschkow et al. (2018). None the
less, we opt to continue with only volume-limited data sets, and leave this
more sophisticated analysis for a future work.
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than other methods of mass completeness estimation in the liter-
ature (see, e.g. Marchesini et al. 2009; Ilbert et al. 2013; Muzzin
et al. 2013; Skelton et al. 2014; Tomczak et al. 2014), however
is unlikely to bias our analysis over the mass ranges we explore.
This method of estimating mass completeness limits is likely to
cause us to overestimate the mass down to which our samples are
complete, as, if a downturn does exist, this will be interpreted as
incompleteness and our analysis truncated prior to this downturn.
Additionally, this method is vindicated in the first 13 bins of our
analysis by the overlap between the various data sets, and is further
bolstered at low redshift where our GAMA mass limits are in rea-
sonable agreement with more rigorously determined limits for the
same sample (Wright et al. 2017; Baldry et al. 2018). None the less,
the assumption is most susceptible to error in the highest redshift
and lowest mass sections of our analysis, precisely the parts where
we have no additional corroborating data. As such, we must recog-
nize the possibility that the analysis in these areas is susceptible to
error.

Fig. 1 shows our combined data set for each of the redshift bins,
with shot and sample variance uncertainties indicated as the per-bin
error bars. Each panel shows the observed number density for each
of the surveys, binned in stellar mass, along with the individual
monte-carlo+bootstrap fits coloured by reduced χ2 (more details
on this are given in Section 3). These panels highlight the value of
this combined data set: even in regions where one or two of our
data sets are lacking in completeness (for example, poor sampling
due to a limited survey area; see the 3D-HST data in redshift bin
4), we have sufficient complementarity between the three surveys
that there is no difficulty in estimating the completely free two-
component Schechter (1976) function.

3 FITTING THE GALAXY STELLAR MAS S
F U N C T I O N

Fitting the Schechter (1976) function to our combined data set
requires careful consideration of each individual data set’s sample
variance uncertainty and selection bias. To account for these, we
invoke a fitting method that allows each sample to be fit with its
own mass limit and independent perturbation of the normalization
(according to the expected sample variance).

We also wish to incorporate our ignorance of precise stellar
masses, and the expected Eddington bias of our samples, into the
fitting procedure as well. To do this, we invoke a combined monte-
carlo+bootstrap simulation method, applied in bins of redshift, using
the following steps at each realization. Starting from the raw data, we
select those data within the redshift bin, and perturb every source’s
stellar mass according to our MAGPHYS fit uncertainty. We then make
a bootstrap realization of this perturbed sample, which results in our
fit data for this realization. Next we bin the three surveys by stellar
mass individually, discarding bins below each survey’s mass limit,
and divide the number counts by the volume probed, per survey,
over this redshift interval. We then perturb each set of binned data
by the expected sample variance uncertainty as reported by Driver
et al. (2017). These binned data points are then fit with a Schechter
function using the quasi-Newton optimization algorithm of Byrd
et al. (1995), which allows box constraint of optimization parame-
ters. We select these box constraints using previous results from the
literature. For all fits, we provide box constraints of M� ∈ [10, 11.5]
and φ� ∈ [0, 1]. For our single component fits, we also constrain
α ∈ [−2, 1.5], and in the two-component case, the individual α’s
are required to be α1 ∈ [−1.1, 1.5] and α2 ∈ [−2, −0.9], thereby
ensuring that the two components do not flip places during opti-

mization, and discouraging fits with degenerate components. The
resulting fit parameters are stored, with uncertainties derived from
the optimization Hessian matrix, and the next realization is begun.
We perform 1001 of these combined monte-carlo+bootstrap realiza-
tions per redshift bin.2 For our final fit parameters and uncertainties,
we take the 1/χ2-weighted median of all converged fit parameters
and use the similarly weighted 16th–84th percentile range for our
parameter uncertainties. By using an optimization procedure such
as this, we are able to simultaneously fit all of our three surveys’
data. This allows for better optimization than would be possible by
fitting each sample independently, as the three highly complemen-
tary surveys provide constraints of different parts of the Schechter
function.

We explore the observed evolution of Schechter function parame-
ters for both a single and two-component Schechter function, and in
both cases have all parameters free (within the box limits specified
above). In each of our optimizations, we maximize the likelihood
of the data with respect to a convolved version of the Schechter
function (with σ conv = 0.1 dex) to account for Eddington bias in our
samples (Driver et al. 2017).

The two-component Schechter function is visually a much bet-
ter description of the data at low redshift, as can be seen by the
clear plateau in the mass functions, and has been adopted almost
unanimously as the appropriate descriptor of the GSMF there (see
e.g. Baldry, Glazebrook & Driver 2008; Baldry et al. 2012; David-
zon et al. 2017; Wright et al. 2017). Conversely, at high redshift,
the GSMF is frequently argued to be well described by a single
component Schechter function, which is often used for fitting mass
functions there (see e.g. Duncan et al. 2014; Grazian et al. 2015;
Song et al. 2016; Davidzon et al. 2017). In our analysis, rather
than assume a particular Schechter function formalism for different
redshift bins, we opt to fit both single and two-component func-
tions to each of our redshift bins and provide fit parameters and
goodness-of-fit statistics for each. By presenting both data sets in
this way, we aim to explore how the mass function evolves under
both assumptions without possibly uncertain restrictions.

At low redshift, the combination of highly complete GAMA data
and the deep G10-COSMOS and 3D-HST data allows us to simulta-
neously constrain the exponential cut-off of the GSMF (principally
parametrized by the M� parameter) and the slope parameter(s) αi.
However, at high redshift, our constraint on the slope parameter is
less robust, as the data only extend to ∼1 dex below M�. In these
higher redshift bins, one might expect that the two-component fits
would become extremely noisy, as the optimization has far too much
freedom given the data – another reason to perform optimizations
using both functional forms. We note, however, that our choice of
limiting values on the normalization parameter allows the optimizer
to explore single component solutions even in the two-component
optimization. All individual fit parameters and reduced χ2 values
are presented in Appendix A.

In addition to fitting our two different Schechter forms, we also
make some further assumptions that allow us to better constrain the
Schechter function form at each redshift interval. If we assume that
redshift evolution of each parameter should a priori be a smooth
function, then we can fit the redshift evolution of each parameter
with a simple function and use this to generate a less noisy es-
timate of how the Schechter function evolves over cosmic time.
Therefore, after establishing our best-fitting Schechter parameters

2Testing with 10001 realizations in our 3rd bin produced no change in
parameter inferences.
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Figure 1. The two-component Schechter function fits to our combined GAMA (red), G10-COSMOS (blue), and 3D-HST (green) data set. Each panel shows
a redshift bin (limits are annotated) with the fitted data, per survey, and the results from the bootstrapped fitting procedure (lines; coloured by fit reduced χ2).
Uncertainties on the data sets are determined by the cosmic variance uncertainty of each survey within the relevant redshift interval, and the shot noise per
mass bin. Redshift bins 3 and 4 show considerable drops in number density at high masses in G10-COSMOS and 3D-HST. However, even in these cases, the
optimization is able to borrow strength from the complementary GAMA data set and converge on appropriate fits.

in each redshift bin, we also fit a quadratic function to the red-
shift evolution of each parameter and show the Schechter function
evolution using these best-fitting functions. This regression fit to the
individual parameters is not largely different from other (iterative)
regression procedures invoked in the literature (see e.g. Drory &
Alvarez 2008; Leja et al. 2015). We show our regressed fits (and
uncertainties) alongside our individual optimizations, and the fit
parameters are also presented in Appendix A (Table A3).

4 R ESULTS

Fig. 2 shows the evolution of our Schechter function parameters
M�, φ�, and αi, as well as the evolution of the integrated stellar
mass density (which is derived using the analytical integration of
the Schechter function fits over all masses). In the figure, we show
a compilation of literature values for each parameter (centre), as
well as our single (left) and two-component (right) fits, separated
to aid clarity. The individual data are shown with uncertainties,
as described in Section 3. The regression fits are shown with the
uncertainty regions also shown as shaded regions around the best-
fitting line. We can see that, in all cases, the fits are best constrained
in the low-to-mid redshift bins, and that the fit uncertainties increase
significantly beyond lookback times of ∼11 h−1

70 Gyr.
Looking first at our two-component fits, we see a surprising

lack of evolution in all the shape parameters within our fits. Our
regressed fit in M� is consistent with being flat, although a pragmatic
interpretation would likely be that there has been a very slight
decrease in the value of M� over the last ∼11.5 h−1

70 Gyr. Our fit also

exhibits a downturn at higher redshifts; however, the constraint here
is sufficiently weak that interpreting this as a real feature is difficult.

The single component fit shows a somewhat higher M� than the
two-component fit at essentially all times, indicating a bias that can
be induced when fitting single component Schechter functions (even
high redshift) to data that should likely be fit with more components.
The fits also move to significantly higher values of M� at early times,
causing the regression to behave somewhat poorly. We note that this
trend is also evident in the literature; studies that have invoked a
two-component Schechter function (e.g. Leja et al. 2015; Davidzon
et al. 2017; Wright et al. 2017) show systematically lower values
of M� than those that fit only a single component (e.g. Fontana
et al. 2006; Tomczak et al. 2014). This trend is exacerbated by the
degeneracy between M� and α, which gets stronger as α approaches
a value of −2 (as it does in the high-redshift single component fits).
For these reasons alone, we believe that there is a clear motivation to
describe the shape of the Schechter function with two components
(at least see Kelvin et al. 2014; Moffett et al. 2016), even out to high
redshifts.

The two-component slope parameters αi also show little evidence
of evolution. The low-mass component in particular is impressively
stable over cosmic time, showing only a minor flattening over the
last 11 h−1

70 Gyr. Conversely, our single component fits (and the sin-
gle component regressed model) show an appreciable evolution,
and one that shows appreciable steepening of the mass function
slope (particularly at high redshift). We argue that this observed
evolution is an artefact. At low redshift, the mass function is poorly
described by a single component fit, and the slope parameter is
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Figure 2. Evolution of the Schechter function parameters, and of the integrated stellar mass density, as a function of lookback time. Centre column: Literature
compendium of the evolution of each parameter over time. Relevant sources to the Schechter parameter evolution panels are annotated in the φ� panel. In
ρ�, we show only the compendium of Madau & Dickinson (2014) and the previous results using this data set from Driver et al. (2017). Left column: Results
from our single component Schechter function fits to the data set. Individual optimizations per bin are shown as points, with uncertainties showing the ±1σ

confidence region determined from the individual bootstrap fits weighted by their χ2
r . Our regressions are shown as lines with a shaded uncertainty region.

Right column: Results from our two-component Schechter function fits to the data set. Points and lines here are the same as in the centre column, except now
there are multiple components being shown in the φ� and α panels. Points circled in red are clipped prior to the estimation of the regression fit, as they are in
high tension with the other data. All data points here are provided as supplementary data with this paper. Regression fits are given in Appendix A.

flattened by the plateau of the mass function. Interestingly, at high
redshift, our single component fits prefer the same increase in slope
and M� as is often seen in the literature, while our two-component
fits show no such effect. This result is seen particularly well in
the recent work of Davidzon et al. (2017), who see their Schechter
function slope and M� grow significantly steeper and more massive,
respectively, in their highest three redshift bins where they transi-
tion from a two-component fit to single component fit. Meanwhile,
our observed fits are in agreement with other studies that push to
the estimation of the GSMF to high redshift (Grazian et al. 2015;
Song et al. 2016). Finally, our high-mass component shows a slight
evolution to a steeper slope over the last 11 h−1

70 Gyr; however, it is
also reasonably consistent with no evolution.

The value of φ� shows the strongest evolution of any of our fitted
parameters. In the case of our two-component fits, we observe a
marginal decrease in the observed number density of the low-mass
component over the last 12 h−1

70 Gyr, followed by a downturn in
the evolution at the highest redshifts. In contrast to this observed
stability, the high-mass component evolves significantly and with
more rapidity. The result of this is that the high-mass component
begins with little contribution to the mass density, and then builds
up to become the dominant component (in mass) at ∼8.5 h−1

70 Gyr

lookback time. This evolution is seen strongly both in our regressed
fits and the individual parameter estimates, with the exception of
two outlier bins at ∼4.5 and 5.0 h−1

70 Gyr, which are circled red in
Fig. 2. These bins are both clipped prior to fitting the regression
fit to the high-mass component evolution of φ�, and the former bin
is also clipped prior to fitting the regression fit to the high-mass
component evolution of the stellar mass density. We also note that
this evolution is particularly well matched to the model presented
in Leja et al. (2015), although our estimates of other parameters
differ somewhat and therefore our resulting mass density evolution
is somewhat different from that which is presented there.

Further, comparing the goodness-of-fit of both our single com-
ponent fit and two-component fit, we see that all bins have reduced
χ2 values that overlap. While one may be inclined to argue that this
indicates that our fits are agnostic to the choice of single component
fit or two-component fit in all bins (and, indeed, this is likely true in
most of our higher redshift bins), it is important to note the consid-
erable covariance between the two sets of χ2

r values. In most bins
where we have at least two complementary data sets, the dominating
source of scatter in our presented χ2

r values is the tension between
each of the individual data sets, induced by our cosmic variance
perturbation. This can be seen in Fig. 1 and in Tables A1 and A2,
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Figure 3. Evolution of the Schechter function over ∼11 h−1
70 Gyr (an animated version is provided as supplementary data) – Over cosmic time, as determined

using the regressed Schechter parameters from Fig. 2. At each redshift bin, we show the model over only the region where we have data. The upper panel
shows the evolution of galaxy number density φ, while the lower panel shows the evolution of the galaxy mass density ρ. Uncertainty regions (shaded) show
the full allowed region of the fit parameters assuming no covariance, and so are particularly conservative. The figure demonstrates clearly the stability of the
Schechter function faint-end slope over time, with only a modest flatting of the number density slope at late times. The evolution is well described by a simple
build-up of mass in the high-mass component over cosmic time. Similarly, the evolution of mass density is seen to be almost entirely driven by the build-up of
the high-mass component, around M�.

whereby we see jointly higher absolute values and scatter of χ2
r in

bins that are initially in tension: compare, for example, the scatter
on our χ2

r values in bins 2 and 3, or 6 and 7, for both sets of fits.
This coherent scatter induces covariance between the χ2

r values in
each model, making simple inference regarding model superiority
difficult. As such, rather than propose a particular model as being
better fitting than another, we instead focus on what we can learn
from the evolution of the two models independently.

Finally, we calculate the value of the stellar mass density pa-
rameter ρ� for each of our fits, again using the analytic integral of
the fits over all masses. The density parameter proves extremely
robust to our different models and fits; all of our fits show a similar
evolution and reasonable agreement with previous work from the
literature. This is not surprising as the main contribution to mass
density at each epoch tends to be from M � M� galaxies (and this
region is typically well modelled in all the fits). None the less, the
stochasticity is removed in our regressed models, and we can see
that these values follow the literature well. Interestingly, we note
that our fits find a surplus of mass density at low redshift with re-
spect to that reported in Driver et al. (2017), and in doing so our fits
remove any disparity seen between their low redshift bins and the
literature.

All fit results and regression functions are provided in Ap-
pendix A.

5 D ISCUSSION

In Fig. 3, we show graphically the evolution of our fitted Schechter
functions, in both number and mass density, over the last 11 Gyr
(i.e. in the regime where the evolutional regression fits from Fig. 2
are well constrained). In the figure, we can see the striking stability
of the mass function over this lookback baseline, with only the high-
mass component showing a gradual growth over time. To show this
clearer, we provide an animation of this mass function evolution
figure in the supplementary material.

The stability of the two-component shape parameters, and the
observed evolution of the normalization parameters, suggests that
these two components loosely track two separate growth mecha-
nisms for galaxies. The low-mass component is dominant at early
times after rapidly building up mass in the first few Gyr, but then
quickly slows to a somewhat constant mass density at later epochs.
This can be considered to trace secular evolution of galaxies in
the field. The high-mass component, on the other hand, demon-
strates a lack of mass density at early times but rapidly builds up to
become the dominant component around ttrav ≈ 9 h−1

70 Gyr. This
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Figure 4. The GSMF average growth function across lookback times t ∈
[0.2, 11.0], shown in fractional growth (�; top) and in mass density (ρ; bot-
tom). The distribution, which is calculated as in equation (1), demonstrates
the average expected growth of the Schechter function number density as-
suming a uniform growth rate over the entire lookback window. The grey
lines show the distribution as calculated from the ratio of each of the 1001
bootstrap realizations shown in bins 1 and 15 of Fig. 1, with significant
transparency. The red points show the ratio of the data in these bins, for
the mutually spanned mass range. The blue dashed line is the median of
all the bootstrap realizations. The distribution shows that, across this range
of lookback times, the average growth per Gyr has been restricted almost
entirely to the high-mass end of the Schechter function, around M�. The
low-mass end of the Schechter function shows no significant growth (or
loss). At the high-mass end, the function converges to the limiting value of
−(t1–t2)−1 ≈ −0.1.

mode of mass evolution can be considered to trace growth via merg-
ers. This evolutionary sequence matches well with the mode of mass
growth posited in Robotham et al. (2014), where the low-mass (disc
dominated) end of the GSMF is populated primarily via secular
evolution, and then high-mass (bulge dominated) components grow
more significant over time through the galaxy mergers (see their fig.
17).3 We are able to test whether such a growth mechanism matches
well with our observations here by generating a distribution of aver-
age growth over the last ∼11 h−1

70 Gyr. Using such a distribution, we
will be able to qualitatively assess, from the shape alone, whether
this mechanism is able to explain the majority of the evolution that
we observe. Additionally, we can use the same distribution to assess
whether the mass function evolution that we observe can be well
modelled by a simple steady-state growth, or whether the observed
evolution exhibits periods of faster/slower/stochastic growth. A con-
stant rate of growth, for example, may suggest that there exists some
regulatory process that generates a quasi-steady-state relationship
between mass growth, destruction, and redistribution methods (de-
spite observations of higher fractions of disturbed galaxies at high
redshift; see e.g. Bridge et al. 2010).

3Note, of course, that this is just one component of the many mass
growth/loss/redistribution mechanisms in galaxy formation.

To test whether the growth we see is consistent with a constant
growth model, we estimate the average fractional growth of the
GSMF per Gyr as

� = φ̃2 − φ1

φ1
(t1 − t2)−1, (1)

where φi is the GSMF at lookback time ti, t1 and t2 are chosen
as being the lookback times in two of our GSMF evolution bins,
and x̃ denotes the median of all bootstrap realizations of x (i.e. this
function is defined using the actual fits in these bins, rather than the
regressions). This definition has range

� ∈ [−(t1 − t2)−1, ∞) ∀ φi ≥ 0, (2)

which corresponds to the limits where φ1 
 φ2 and φ2 
 φ1,
respectively. This range makes intuitive sense, given the domain φi

∈ [0, ∞); φ2 can grow to be infinitely larger than φ1, but can only
lose as much as �φ2 = φ1.

We opt to use bins 1 (t2 ≈ 0.61 h−1
70 Gyr) and 15 (t1 ≈

10.8 h−1
70 Gyr) to define the growth function, as they span the

widest range of lookback time where the low-mass component is
not rapidly evolving in normalization (see Fig. 2). Importantly,
however, we note that this definition therefore requires significant
extrapolation of the bin 15 Schechter fits, well below the lower mass
limit of the data in this bin.

Our average growth function, returned from the individual boot-
strap fits to the data, is shown in the upper panel of Fig. 4, and
the average growth of ρ� is shown in the lower panel. In both
panels, we can see a summary of our main conclusion about the
evolution of the GSMF; it shows that there is essentially no change
in either the mass or number density of the low-mass end of the
GSMF over the last 11 h−1

70 Gyr, while the high-mass end of the
GSMF exhibits strong growth that peaks at � ≈ 0.65 h−1

70 Gyr, and
�ρ� ≈ 2 × 107M� h3

70 Gyr−1, and is centred on M�. At the highest
masses, the growth function � converges on its asymptote value, as
the exponential tail of the low-z mass function beats its compatriot
to 0.

The observed stellar mass growth function essentially de-
scribes the integrated effect of all galaxy stellar mass
growth/loss/redistribution mechanisms over the 11 h−1

70 Gyr spanned
by the growth function definition. This would include, but is of
course not limited to:

(i) growth due to star formation from all sources (e.g. secular
and merger-driven), and how the star formation rate varies over
time;

(ii) mass lost due to stellar evolution, and how this stellar evolu-
tion changes with stellar population evolution; and

(iii) mass lost to the intragroup/intracluster/intergalactic medium
due to stripping/merger events.

Modelling this complex evolution of mass in the Universe is
a significant task and would require comprehensive modelling of
(at least) each of the items listed above. Rather than attempt to
undertake this task, we instead opt to present our observed mass
redistribution function as an additional observable that may be of
interest to the community, and leave this comprehensive modelling
for the future.

As an observable, our growth function suggests that the assembly
of stellar mass over the last ∼11h−1

70 Gyr has involved an interplay
between the various stellar mass growth/destruction/redistribution
mechanisms, such that no net loss in mass density occurs at any
point in the mass function. As such, this growth function may
be verifiable/falsifiable using future simulations and surveys that
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Figure 5. Difference between the three main model types discussed in this work. In each bin, the data are shown in black (reproduced from Fig. 1), the
weighted median of all bootstrap realizations is shown in red, the model returned from our best-fitting regressions (see Fig. 2) is shown in green, and the model
returned by our constant growth model is shown in blue (not shown in bins beyond where the model was defined). At all epochs, these fits are essentially
consistent.

Figure 6. The evolution of the stellar mass density as estimated using our regressed fits and with our simple model of constant high-mass growth in the GSMF.
The regressed fits (coloured lines) demonstrate the agreement between our data and the evolution in the literature (grey points), despite the uncertainties on
our fits becoming significant at the highest redshifts. Moreover, the simple model of constant mass function growth (black dashed line) is also in excellent
agreement with the literature over the last ∼11 h−1

70 Gyr. At higher redshift, the simple model is unable to capture the rapid growth of the low-mass component,
and so the model overpredicts the stellar mass density, as expected. Here the growth model �r has been defined using the regressed fits in our bins 1 and 15
(shown by the black crosses) so that the green and black lines are directly comparable.

endeavour to explore the integrated properties of mass evolution.
To this end, ongoing and upcoming surveys that will allow the con-
struction of high-fidelity catalogues of group-scale environments
will be invaluable. Surveys such as the Deep Extragalactic VIsible
Legacy Survey4 (DEVILS; Davies et. al. 2018) and the Wide Area

4devilsurvey.org

VISTA Extragalactic Survey5 (WAVES; Driver et al. 2016a) will
be able to estimate the integrated redistribution of mass in a wide
range of environments, and will be ideal for this purpose.

This assumes, however, that the true stellar mass growth in the
Universe varies smoothly. Fortunately, we can simply test whether

5wave-survey.org
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our observed average growth function is indeed a reasonable repre-
sentation of the observed mass function, and mass density, at each
epoch. We do this simply by using the average growth model to
define a simple model GSMF at time ti as

φm,i = φ1 [1 + � (t1 − ti)]. (3)

To demonstrate the surprising amount of similarity that this simple
model demonstrates to both the data and our best-fitting regressed
Schechter functions, we reproduce Fig. 1 in Fig. 5, except now
showing lines for the median bootstrap model, the best-fitting re-
gressed model, and the simple constant growth model alongside one
another. The figure demonstrates that the three models are indeed
consistent with each other, differing most significantly in the over-
all Schechter normalization (where the red bootstrap model lines at
each epoch trace variations in large-scale structure).

We then use these simply modelled GSMFs to calculate a model
stellar mass density at every epoch, ρm

� , and compare these values
to our observed evolution of the stellar mass density parameter
ρ�. These results are shown in Fig. 6, where we reproduce the
bottom left-hand panel of Fig. 2, except in this instance we show
the mass density curves derived by our regressed Schechter function
parameters, rather than the observations themselves (as we did in
Fig. 2). We then overlay the mass density growth returned by our
simple constant growth model, defined in the same way as above,
except that in the figure we use the regression values at bins 1 and
15 to define a growth function �, rather than the bootstrap fits.
This allows us to directly compare how the constant growth model
compares to our regression fits, which make up our best-fitting
GSMFs at each epoch.

In the figure, we can see that our regressed parameters are en-
tirely consistent with the literature, even though the uncertainties
balloon at the highest redshifts6 Moreover, we see that the model
mass functions φr

m follow the evolution of the observed data and
of the best-fitting regression models essentially perfectly over the
last ∼11 h−1

70 Gyr. At the highest redshifts, again, our model does
not follow the rapid evolution of the low-mass component and so
overpredicts the mass density somewhat. None the less, this re-
sult demonstrates that with this strikingly simple model of constant
growth of the high-mass component of the GSMF, we are able to
reproduce the evolution of the stellar mass density over the vast
majority of the evolution history of the Universe and that there has
been a surprising lack of stochasticity in the overall rate of evolution
of the stellar mass density.

6 C O N C L U S I O N S

In this work, we have demonstrated the evolution of Schechter
(1976) function parameters over 12.5 h−1

70 Gyr using the combined
sample of GAMA, G10-COSMOS, and 3D-HST. Using multiple
Schechter function fits, we demonstrate that the single component
Schechter function is unlikely to produce reliable fits, even out to
a redshift of 5. Conversely, the two-component Schechter shows
impressive stability of its fitted parameters over the entire red-
shift range, providing well constrained parameters at essentially

6Recall again, however, that we are assuming no parameter covariance here.
Indeed, comparing the uncertainties between the regressed fits to ρ� in Fig. 2
with those here shows just how much of an impact the covariance plays in
reducing the uncertainties.

all epochs. We explore the evolution of the mass function fur-
ther by regressing the various parameters such that we achieve a
smooth evolution. Our regressed parameters, in our two-component
Schechter fits, show little to no evolution of the M�, αi, or low-
mass φ� parameters over time, and are especially stable over the
last ∼11.0 h−1

70 Gyr. Conversely, the high-mass φ� parameter shows
strong evolution over the same period. The stability of most param-
eters, coupled with the evolution of the high-mass component’s nor-
malization parameter, suggests a picture of galaxy evolution where
these two components broadly track different mass-evolution mech-
anisms: the low-mass systems broadly following secular evolution
of galaxies, while high-mass systems are constantly being built up
through merger processes. At the highest redshifts, the low-mass
component exhibits somewhat rapid evolution in its normalization,
starting out as the mass-dominant component of the GSMF until it
is overtaken at ∼9 h−1

70 Gyr, when the growing high-mass compo-
nent becomes the dominant reservoir of mass. We then test whether
the build-up of mass over the last 11 h−1

70 Gyr is well described by
a constant rate of mass growth, finding that this is indeed the case,
and that a simple model of the mass function growth is able to per-
fectly describe the observed evolution of the stellar mass density
parameter over the majority of the evolution history of the Uni-
verse. None the less, we recognize that this mass growth function
encodes a highly complex array of mass growth/loss/redistribution
mechanisms, and that alone may be only used as a guiding observ-
able in future complex mass-assembly studies. We conclude that
upcoming deep and highly complete surveys of group-scale envi-
ronments, at intermediate-to-high redshift, will be required in order
to determine the mechanisms driving the observed growth of stellar
mass.
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70 Gyr.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

APPENDI X A : FI T RESULTS A ND
R E G R E S S I O N F U N C T I O N S

MNRAS 480, 3491–3502 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/3491/5067323 by St Andrew
s U

niversity Library user on 01 N
ovem

ber 2018

http://dx.doi.org/10.1086/378847
http://dx.doi.org/10.1088/0067-0049/200/2/13
http://dx.doi.org/10.1088/0004-637X/709/2/1067
http://dx.doi.org/10.1046/j.1365-8711.2003.06897.x
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1086/376392
http://dx.doi.org/10.1086/309250
http://dx.doi.org/10.1046/j.1365-8711.2001.04591.x
http://dx.doi.org/ 10.3847/0004-637X/830/2/83
http://dx.doi.org/10.1111/j.1365-2966.2004.08379.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13535.x
http://dx.doi.org/ 10.1051/0004-6361/201730419
http://dx.doi.org/10.1093/mnras/stv1241
http://dx.doi.org/ 10.1093/mnras/sty1553
http://dx.doi.org/10.1088/0004-637X/748/2/142
http://dx.doi.org/10.1007/978-3-319-19330-4_32
http://dx.doi.org/10.1111/j.1468-4004.2009.50512.x
http://dx.doi.org/10.1111/j.1365-2966.2010.18188.x
http://dx.doi.org/10.1093/mnras/stv2505
http://dx.doi.org/10.1093/mnras/stx2728
http://dx.doi.org/10.1086/588006
http://dx.doi.org/10.1093/mnras/stu1622
http://dx.doi.org/10.1051/0004-6361:20065475
http://dx.doi.org/10.1086/497644
http://dx.doi.org/10.1086/379232
http://dx.doi.org/10.1051/0004-6361/201424750
http://dx.doi.org/10.1088/0067-0049/197/2/35
http://dx.doi.org/10.1051/0004-6361/201321100
http://dx.doi.org/10.1093/mnras/stt2391
http://dx.doi.org/10.1088/0067-0049/197/2/36
http://dx.doi.org/10.1088/0004-637X/798/2/115
http://dx.doi.org/10.1146/annurev-astro-081811-125615
http://dx.doi.org/10.1088/0004-637X/701/2/1765
http://dx.doi.org/10.1093/mnras/stv2883
http://dx.doi.org/10.3847/0067-0049/225/2/27
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1088/0004-637X/777/1/18
http://dx.doi.org/10.1093/mnras/stx3155
https://www.R-project.org/
http://dx.doi.org/10.1093/mnras/stu1604
http://dx.doi.org/10.1093/mnras/stx1172
http://dx.doi.org/10.1086/154079
http://dx.doi.org/10.1086/516585
http://dx.doi.org/10.1111/j.1365-2966.2008.13166.x
http://dx.doi.org/10.1088/0067-0049/214/2/24
http://dx.doi.org/10.3847/0004-637X/825/1/5
http://dx.doi.org/10.1088/0004-637X/783/2/85
http://dx.doi.org/10.1093/mnras/stw832
http://dx.doi.org/10.1093/mnras/stx1149
http://dx.doi.org/10.1086/521074
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/sty2136#supplementary-data


Stellar mass evolution 3501

Table A1. Best-fitting single component Schechter function parameters, and χ2
r values, in each redshift bin. Uncertainties show the asymmetric 1σ quantiles

on each parameter.

Bin M� α1 φ�
1 ρ� χ2

r

1 10.86+0.056
−0.039 −1.134+0.033

−0.067 −2.491+0.1
−0.128 8.419+0.083

−0.089 1.129+0.972
−0.638

2 10.934+0.056
−0.063 −1.172+0.14

−0.115 −2.471+0.118
−0.146 8.51+0.054

−0.059 1.089+0.612
−0.416

3 10.918+0.052
−0.06 −1.066+0.209

−0.127 −2.471+0.096
−0.127 8.449+0.053

−0.055 2.654+1.110
−0.640

4 10.947+0.029
−0.042 −1.133+0.148

−0.096 −2.538+0.067
−0.064 8.443+0.037

−0.04 2.461+0.944
−0.668

5 10.994+0.028
−0.044 −1.131+0.195

−0.106 −2.614+0.067
−0.064 8.409+0.043

−0.049 2.739+1.418
−0.805

6 11.101+0.022
−0.028 −1.282+0.124

−0.065 −2.953+0.048
−0.047 8.247+0.037

−0.053 2.743+1.379
−0.772

7 11.139+0.033
−0.028 −1.387+0.025

−0.025 −3.181+0.094
−0.091 8.129+0.061

−0.071 0.775+0.790
−0.319

8 10.956+0.044
−0.033 −1.35+0.03

−0.042 −2.967+0.119
−0.169 8.125+0.076

−0.101 2.185+0.823
−0.664

9 10.985+0.048
−0.019 −1.372+0.018

−0.023 −3.059+0.082
−0.098 8.097+0.062

−0.075 2.008+0.837
−0.649

10 11.212+0.073
−0.058 −1.486+0.024

−0.029 −3.334+0.097
−0.105 8.124+0.061

−0.069 3.523+1.653
−1.135

11 11.082+0.048
−0.039 −1.319+0.024

−0.023 −3.203+0.075
−0.081 8.006+0.057

−0.065 2.630+1.078
−0.763

12 11.081+0.06
−0.035 −1.297+0.031

−0.035 −3.256+0.08
−0.083 7.947+0.056

−0.063 2.987+2.338
−1.209

13 11.167+0.062
−0.055 −1.398+0.069

−0.077 −3.498+0.097
−0.134 7.844+0.052

−0.055 6.571+3.913
−2.919

14 11.495+0.005
−0.131 −1.528+0.023

−0.018 −3.74+0.091
−0.092 7.983+0.077

−0.077 0.271+0.286
−0.150

15 11.498+0.002
−0.234 −1.664+0.094

−0.037 −4.022+0.331
−0.07 7.896+0.035

−0.044 1.235+0.969
−0.646

16 11.471+0.029
−0.256 −1.726+0.022

−0.012 −4.329+0.181
−0.069 7.613+0.053

−0.048 4.006+2.749
−1.867

17 11.5+0.00
−0.011 −1.78+0.00

−0.009 −4.623+0.064
−0.104 7.459+0.099

−0.075 5.835+2.818
−2.561

18 11.122+0.378
−0.503 −1.648+0.272

−0.133 −4.453+0.517
−0.46 7.051+0.164

−0.159 2.547+1.692
−1.331

19 11.116+0.027
−0.012 −1.634+0.029

−0.042 −4.496+0.036
−0.08 7.006+0.047

−0.052 1.861+1.555
−0.888

Table A2. Best-fitting two-component Schechter function parameters, and median χ2
r values, in each redshift bin. Uncertainties show the asymmetric 1σ

quantiles on each parameter.

Bin M� α1 α2 φ�
1 φ�

2 ρ� χ2
r

1 10.68+0.079
−0.077 −0.515+0.206

−0.319 −1.517+0.179
−0.204 −2.304+0.117

−0.12 −3.13+0.335
−0.506 8.455+0.082

−0.093 0.531+0.512
−0.275

2 10.8+0.044
−0.043 −0.612+0.133

−0.288 −1.457+0.101
−0.11 −2.377+0.093

−0.103 −3.037+0.205
−0.711 8.526+0.05

−0.065 0.836+0.728
−0.329

3 10.819+0.033
−0.028 −0.646+0.103

−0.142 −1.507+0.049
−0.117 −2.39+0.06

−0.071 −3.452+0.191
−0.373 8.457+0.046

−0.049 1.982+0.847
−0.641

4 10.837+0.019
−0.014 −0.645+0.017

−0.082 −1.516+0.013
−0.104 −2.456+0.047

−0.047 −3.384+0.169
−0.357 8.431+0.034

−0.038 1.780+0.754
−0.534

5 10.88+0.013
−0.026 −0.55+0.117

−0.043 −1.536+0.035
−0.054 −2.555+0.038

−0.041 −3.4+0.125
−0.184 8.388+0.038

−0.038 1.592+1.207
−0.558

6 10.967+0.014
−0.017 −0.487+0.052

−0.01 −1.586+0.095
−0.019 −2.936+0.048

−0.072 −3.541+0.268
−0.17 8.192+0.05

−0.047 1.561+1.294
−0.574

7 11.065+0.079
−0.067 −0.487+0.055

−0.046 −1.423+0.025
−0.118 −3.632+0.409

−Inf −3.241+0.122
−0.247 8.115+0.078

−0.079 0.904+0.705
−0.385

8 10.805+0.039
−0.021 −0.782+0.136

−0.133 −1.98+0.413
−0.02 −2.659+0.104

−0.148 −4.205+0.922
−0.127 8.508+4.728

−0.299 2.561+0.810
−0.661

9 10.881+0.04
−0.087 −0.858+0.062

−0.154 −1.838+0.254
−0.126 −2.84+0.136

−0.172 −3.977+0.507
−0.356 8.204+0.152

−0.095 2.495+1.078
−0.792

10 11.06+0.191
−0.126 −0.986+0.1

−0.114 −1.591+0.091
−0.209 −3.321+0.332

−Inf −3.532+0.186
−0.291 8.138+0.064

−0.062 3.799+1.804
−1.175

11 10.862+0.064
−0.074 −0.522+0.177

−0.155 −1.488+0.043
−0.05 −3.07+0.102

−0.092 −3.409+0.092
−0.121 8.025+0.053

−0.066 2.564+1.184
−0.700

12 10.857+0.039
−0.052 −0.525+0.102

−0.097 −1.525+0.038
−0.111 −3.049+0.127

−0.09 −3.589+0.105
−0.151 7.974+0.058

−0.062 2.361+1.984
−0.954

13 10.896+0.134
−0.131 −0.36+0.511

−0.552 −1.653+0.093
−0.347 −3.295+0.185

−0.145 −3.785+0.244
−0.194 7.891+0.109

−0.063 6.656+4.003
−3.263

14 11.041+0.248
−0.075 −0.351+0.041

−0.027 −1.589+0.045
−0.073 −3.478+0.158

−0.499 −3.648+0.099
−0.107 7.98+0.072

−0.075 0.342+0.301
−0.185

15 11.075+0.098
−0.098 −0.336+0.064

−0.074 −1.58+0.033
−0.048 −4.039+0.277

−0.389 −3.62+0.062
−0.094 7.846+0.045

−0.058 1.008+1.014
−0.573

16 11.306+0.085
−0.126 −0.734+0.202

−0.138 −1.731+0.061
−0.048 – −4.169+0.185

−0.145 7.667+0.06
−0.065 2.033+1.412

−1.013

17 10.884+0.426
−0.2 −0.154+0.457

−0.656 −1.557+0.185
−0.199 – −3.862+0.301

−0.549 7.358+0.127
−0.078 4.491+2.901

−2.149

18 10.777+0.19
−0.167 0.056+0.312

−0.365 −1.484+0.119
−0.136 −4.787+0.29

−Inf −4.005+0.197
−0.268 7.048+0.08

−0.087 2.782+2.735
−1.652

19 10.71+0.156
−0.18 0.168+0.295

−0.277 −1.437+0.14
−0.12 −4.846+0.331

−Inf −4.02+0.209
−0.221 6.918+0.078

−0.069 3.038+3.205
−1.730
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Table A3. Regression functions displayed in Fig. 2 for both single component and two-component fits. Fits are quadratic in redshift, where the Ai coefficient
applies to the ith power of z.

Fit type Parameter A0 A1 A2

M� 10.791 ± 0.050 0.558 ± 0.056 − 0.102 ± 0.013
Single α − 1.160 ± 0.060 − 0.274 ± 0.067 0.028 ± 0.015

φ� − 2.455 ± 0.069 − 0.883 ± 0.103 0.093 ± 0.022
ρ� 8.433 ± 0.046 − 0.273 ± 0.063 − 0.005 ± 0.014
M� 10.831 ± 0.037 0.153 ± 0.096 − 0.033 ± 0.028
α1 − 0.579 ± 0.063 0.048 ± 0.115 0.022 ± 0.039

Two Comp. α2 − 1.489 ± 0.038 − 0.087 ± 0.053 0.016 ± 0.014
φ�

1 − 2.312 ± 0.032 − 0.658 ± 0.119 0.016 ± 0.066
φ�

2 − 3.326 ± 0.099 − 0.158 ± 0.103 − 0.002 ± 0.024
ρ�, 1 8.452 ± 0.025 − 0.554 ± 0.091 − 0.007 ± 0.050
ρ�, 2 7.678 ± 0.079 0.088 ± 0.108 − 0.050 ± 0.026
ρ�, c 8.449 ± 0.039 − 0.271 ± 0.062 − 0.012 ± 0.015
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