1,558 research outputs found

    Ultrafast light-induced response of photoactive yellow protein chromophore analogues

    Get PDF
    The fluorescence decays of several analogues of the photoactive yellow protein (PYP) chromophore in aqueous solution have been measured by femtosecond fluorescence up-conversion and the corresponding time-resolved fluorescence spectra have been reconstructed. The native chromophore of PYP is a thioester derivative of p-coumaric acid in its trans deprotonated form. Fluorescence kinetics are reported for a thioester phenyl analogue and for two analogues where the thioester group has been changed to amide and carboxylate groups. The kinetics are compared to those we previously reported for the analogues bearing ketone and ester groups. The fluorescence decays of the full series are found to lie in the 1–10 ps range depending on the electron-acceptor character of the substituent, in good agreement with the excited-state relaxation kinetics extracted from transient absorption measurements. Steady-state photolysis is also examined and found to depend strongly on the nature of the substituent. While it has been shown that the ultrafast light-induced response of the chromophore in PYP is controlled by the properties of the protein nanospace, the present results demonstrate that, in solution, the relaxation dynamics and pathway of the chromophore is controlled by its electron donor–acceptor structure: structures of stronger electron donor–acceptor character lead to faster decays and less photoisomerisation

    Knowing Values and Public Inspection

    Get PDF
    We present a basic dynamic epistemic logic of "knowing the value". Analogous to public announcement in standard DEL, we study "public inspection", a new dynamic operator which updates the agents' knowledge about the values of constants. We provide a sound and strongly complete axiomatization for the single and multi-agent case, making use of the well-known Armstrong axioms for dependencies in databases

    Wearable sensors for measuring movement in short sessions of mindfulness sitting meditation: A pilot study

    Get PDF
    Mindfulness techniques are useful tools in health and well-being. To improve and facilitate formal training, beginners need to know if they are in a stable sitting posture and if they can hold it. Previous monitoring studies did not consider stability during sitting meditation or were specific for longer traditional practices. In this paper, we have extended and adapted previous studies to modern mindfulness practices and posed two questions: (a) Which is the best meditation seat for short sessions? In this way, the applications of stability measures are expanded to meditation activities, in which the sitting posture favors stability, and (b) Which is the most sensitive location of an accelerometer to measure body motion during short meditation sessions? A pilot study involving 31 volunteers was conducted using inertial sensors. The results suggest that thumb, head, or infraclavicular locations can be chosen to measure stability despite the habitual lumbar or sacral region found in the literature. Another important finding of this study is that zafus, chairs, and meditation benches are suitable for short meditation sessions in a sitting posture, although the zafu seems to allow for fewer postural changes. This finding opens new opportunities to design very simple and comfortable measuring systems

    Resolving the Azimuthal Ambiguity in Vector Magnetogram Data with the Divergence-Free Condition: Application to Discrete Data

    Full text link
    We investigate how the divergence-free property of magnetic fields can be exploited to resolve the azimuthal ambiguity present in solar vector magnetogram data, by using line-of-sight and horizontal heliographic derivative information as approximated from discrete measurements. Using synthetic data we test several methods that each make different assumptions about how the divergence-free property can be used to resolve the ambiguity. We find that the most robust algorithm involves the minimisation of the absolute value of the divergence summed over the entire field of view. Away from disk centre this method requires the sign and magnitude of the line-of-sight derivatives of all three components of the magnetic field vector.Comment: Solar Physics, in press, 20 pages, 11 figure

    Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae

    Get PDF
    The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot

    The role of heart rate on the associations between body composition and heart rate variability in children with overweight/obesity : the ActiveBrains project

    Get PDF
    Background: Heart rate variability (HRV) is negatively associated with body mass index and adiposity in several populations. However, less information is available about this association in children with overweight and obesity, especially severe/morbid obesity, taking into consideration the dependence of HRV on heart rate (HR). Objectives: (1) to examine associations between body composition measures and HRV, (2) to study differences in HRV between children with overweight and severe/morbid obesity; and (3) to test whether relationships and differences tested in objectives 1 and 2, respectively are explained by the dependency of HRV on HR. Methods: A total of 107 children with overweight/obesity (58% boys, 10.03 +/- 1.13 years) participated in this study. Body composition measures were evaluated by Dual-energy X-ray absorptiometry (DXA). HRV parameters were measured with Polar RS800CXR (R). Results: Body composition measures were negatively associated with HRV indicators of parasympathetic activity (beta values ranging from -0.207 to -0.307, all p 0.05). Conclusion: All associations between adiposity/obesity and HRV could be explained by HR, suggesting a key confounding role of HR in HRV studies in children with weight disturbances

    Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers

    Full text link
    Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or "shock-like", boundary layers of the isentropic compressible Navier-Stokes equations with gamma-law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our results indicate stability for gamma in the interval [1, 3] for all compressive boundary-layers, independent of amplitude, save for inflow layers in the characteristic limit (not treated). Expansive inflow boundary-layers have been shown to be stable for all amplitudes by Matsumura and Nishihara using energy estimates. Besides the parameter of amplitude appearing in the shock case, the boundary-layer case features an additional parameter measuring displacement of the background profile, which greatly complicates the resulting case structure. Moreover, inflow boundary layers turn out to have quite delicate stability in both large-displacement and large-amplitude limits, necessitating the additional use of a mod-two stability index studied earlier by Serre and Zumbrun in order to decide stability

    Strong coupling between mechanical modes in a nanotube resonator

    Full text link
    We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe force. In a second series of experiments, we actuate the resonator with only one oscillating force. Mechanical resonances feature exotic lineshapes with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode with a frequency ratio of either 2 or 3. Conventional lineshapes are recovered by detuning the frequency ratio using the voltage on a nearby gate electrode. The exotic lineshapes are attributed to strong coupling between the mechanical modes. The possibility to control the strength of the coupling with the gate voltage holds promise for various experiments, such as quantum manipulation, mechanical signal processing, and the study of the quantum-toclassical transition.Comment: manuscript and supporting material, 31 pages, 15 figure

    Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors

    Get PDF
    Selective heating of different phases of multiphase systems via microwaves can result in energy savings and suppression of side reactions. However, materials properties and operating conditions that maximize temperature gradients are poorly understood. Here we utilize computational fluid dynamics (CFD) computations and temperature measurements in structured flow reactors (monoliths) in a monomodal microwave cavity to assess the temperature difference between the walls and the fluid and develop a simple lumped model to estimate when temperature gradients exist. We also explore the material's thermal and electrical properties of structured reactors for isothermal catalyst conditions. We propose that CFD simulations can be used as a nonintrusive, predictive tool of temperature homogeneity. Importantly, we demonstrate that localized heating in the bed under several conditions rather than selective heating is responsible for the selectivity enhancement. Our results indicate that structured beds made of high thermal conductivity materials avoid arcing and enable temperature homogeneity and low electrical conductivity materials allow microwaves to penetrate the domain
    • 

    corecore