
Knowing Values and Public Inspection

Jan van Eijck1,2, Malvin Gattinger1(B), and Yanjing Wang3

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
malvin@w4eg.eu

2 SEN1, CWI, Amsterdam, The Netherlands
3 Department of Philosophy, Peking University, Beijing, China

Abstract. We present a basic dynamic epistemic logic of “knowing
the value”. Analogous to public announcement in standard DEL, we
study “public inspection”, a new dynamic operator which updates the
agents’ knowledge about the values of constants. We provide a sound and
strongly complete axiomatization for the single and multi-agent case,
making use of the well-known Armstrong axioms for dependencies in
databases.

Keywords: Knowing what · Bisimulation · Public announcement logic

1 Introduction

Standard epistemic logic studies propositional knowledge expressed by “knowing
that”. However, in everyday life we talk about knowledge in many other ways,
such as “knowing what the password is”, “knowing how to swim”, “knowing
why he was late” and so on. Recently the epistemic logics of such expressions
are drawing more and more attention (see [1] for a survey).

Merely reasoning about static knowledge is important but it is also interest-
ing to study the changes of knowledge. Dynamic Epistemic Logic (DEL) is an
important tool for this, which handles how knowledge (and belief) is updated by
events or actions [2]. For example, extending standard epistemic logic, one can
update the propositional knowledge of agents by making propositional announce-
ments. They are nicely studied by public announcement logic [3] which includes
reduction axioms to completely describe the interplay of “knowing that” and
“announcing that”. Given this, we can also ask: What are natural dynamic coun-
terparts the knowledge expressed by other expressions such as knowing what,
knowing how etc.? How do we formalize “announcing what”?

In this paper, we study a basic dynamic operation which updates the knowl-
edge of the values of certain constants.1 The action of public inspection is the
knowing value counterpart of public announcement and we will see that it fits
1 In this paper, by constant we mean something which has a single value given the
actual situation. The range of possible values of a constant may be infinite. This
terminology is motivated by first-order modal logic as it will become more clear
later.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 77–90, 2017.
DOI: 10.1007/978-3-662-54069-5 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

78 J. van Eijck et al.

well with the logic of knowing value. As an example, we may use a sensor to
measure the current temperature of the room. It is reasonable to say that after
using the sensor you will know the temperature of the room. Note that it is not
reasonable to encode this by standard public announcement since it may result
in a possibly infinite formula: [t = 27.1 ◦C]K(t = 27.1 ◦C) ∧ [t = 27.2 ◦C]K(t =
27.2 ◦C) ∧ . . . , and the inspection action itself may require an infinite action
model in the standard DEL framework of [4] with a separate event for each
possible value. Hence public inspection can be viewed as a public announce-
ment of the actual value, but new techniques are required to express it formally.
In our simple framework we define knowing and inspecting values as primitive
operators, leaving the actual values out of our logical language.

The notions of knowing and inspecting values have a natural connection with
dependencies in databases. This will also play a crucial role in the later technical
development of the paper. In particular, our completeness proofs employ the
famous set of axioms from [5]. For now, consider the following example.

Example 1. Suppose a university course was evaluated using anonymous ques-
tionnaires which besides an assessment for the teacher also asked the students
for their main subject. See Table 1 for the results. Now suppose a student tells
you, the teacher, that his major is Computer Science. Then clearly you know
how that student assessed the course, since there is some dependency between
the two columns. More precisely, in the cases of students 3 and 4, telling you
the value of “Subject” effectively also tells you the value of “Assessment”. In
practice, a better questionnaire would only ask for combinations of questions
that do not allow the identification of students.

Table 1. Evaluation results

Student Subject Assessment

1 Mathematics Good

2 Mathematics Very good

3 Logic Good

4 Computer Science Bad

Other examples abound: The author of [6] gives an account of how easily so-
called ‘de-identified data’ produced from medical records could be ‘re-identified’,
by matching patient names to publicly available health data.

These examples illustrate that reasoning about knowledge of values in isola-
tion, i.e. separated from knowledge that, is both possible and informative. It is
such knowledge and its dynamics that we will study here.

2 Existing Work

Our work relates to a collection of papers on epistemic logics with other operators
than the standard “knowing that” Kϕ. In particular we are interested in the Kv

Knowing Values and Public Inspection 79

operator expressing that an agent knows a value of a variable or constant. This
operator is already mentioned in the seminal work [3] which introduced public
announcement logic (PAL). However, a complete axiomatization of PAL together
with Kv was only given in [7,8] using the relativized operator Kv(ϕ, c) for the
single and multi-agent cases. Moreover, it has been shown in [9] that by treating
the negation of Kv as a primitive diamond-like operator, the logic can be seen
as a normal modal logic in disguise with binary modalities.

Inspired by a talk partly based on an earlier version of this paper,
Baltag proposed the very expressive Logic of Epistemic Dependency (LED) [10],
where knowing that, knowing value, announcing that, announcing value can all
be encoded in a general language which also includes equalities like c = 4 to
facilitate the axiomatization.

In this paper we go in the other direction: Instead of extending the standard
PAL framework with Kv, we study it in isolation together with its dynamic
counterpart [c] for public inspection. In general, the motto of our work here
is to see how far one can get in formalizing knowledge and inspection of values
without going all the way to or even beyond PAL. In particular we do not include
values in the syntax and we do not have any nested epistemic modalities.

As one would expect, our simple language is accompanied by simpler models
and also the proofs are less complicated than existing methods. Still we consider
our Public Inspection Logic (PIL) more than a toy logic. Our completeness
proof includes a novel construction which we call “canonical dependency graph”
(Definition 6). We also establish the precise connection between our axioms and
the Armstrong axioms widely used in database theory [5].

Table 2 shows how PIL fits into the family of existing languages. Note that
[10] is the most expressive language in which all operators are encoded using
Kt1,...,tn

i t which expresses that given the current values of t1 to tn, agent i knows
the value of t. Moreover, to obtain a complete proof system for LED one also
needs to include equality and rigid constants in the language. It is thus an open
question to find axiomatizations for a language between PIL and LED without
equality.

Table 2. Comparison of languages

PAL p Kϕ [!ϕ]ϕ [3]

PAL+Kv p Kϕ Kv(c) [!ϕ]ϕ [3]

PAL+Kvr p Kϕ Kv(c) Kv(ϕ, c) [!ϕ]ϕ [7–9]

PIL Kv(c) [c]ϕ This paper

PIL+K Kϕ Kv(c) [c]ϕ Future work

LED p Kϕ Kv(c) Kv(ϕ, c) [c]ϕ [!ϕ]ϕ c = c [10]

All languages include the standard boolean operators �, ¬ and ∧ which we
do not list in Table 2.

We also discuss other related works not in this line at the end of the paper.

80 J. van Eijck et al.

3 Single-Agent PIL

We first consider a simple single-agent language to talk about knowing and
inspecting values. Throughout the paper we assume a fixed set of constants C.

Definition 1 (Syntax). Let c range over C. The language L1 is given by:

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kv(c) | [c]ϕ

Besides standard interpretations of the boolean connectives, the intended
meanings are as follows: Kv(c) reads “the agent knows the value of c” and the
formula [c]ϕ is meant to say “after revealing the actual value of c, ϕ is the case”.
We also use the standard abbreviations ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and ϕ → ψ :=
¬ϕ ∨ ψ.

Definition 2 (Models and Semantics). A model for L1 is a tuple M =
〈S,D, V 〉 where S is a non-empty set of worlds (also called states), D is a non-
empty domain and V is a valuation V : (S×C) → D. To denote V (s, c) = V (t, c),
i.e. that c has the same value at s and t according to V , we write s =c t. If this
holds for all c ∈ C ⊆ C we write s =C t. The semantics are as follows:

M, s � � always
M, s � ¬ϕ ⇔ M, s � ϕ
M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ
M, s � Kv(c) ⇔ for all t ∈ S : s =c t
M, s � [c]ϕ ⇔ M|sc, s � ϕ

where M|sc is 〈S′,D, V |S′×C〉 with S′ = {t ∈ S | s =c t}. If for a set of formulas
Γ and a formula ϕ we have that whenever a model M and a state s satisfy
M, s � Γ then they also satisfy M, s � ϕ, then we say that ϕ follows semantically
from Γ and write Γ � ϕ. If this hold for Γ = ∅ we say that ϕ is semantically
valid and write � ϕ.

Note that the actual state s plays an important role in the last clause of our
semantics: Public inspection of c at s reveals the local actual value of c to the
agent. The model is restricted to those worlds which agree on c with s. This
is different from PAL and other DEL variants based on action models, where
updates are usually defined on models directly and not on pointed models.

We employ the usual abbreviation 〈c〉ϕ as ¬[c]¬ϕ. Note however, that public
inspection of c can always take place and is deterministic. Hence the determinacy
axiom 〈c〉ϕ ↔ [c]ϕ is semantically valid and we include it in the following system.

Definition 3. The proof system SPIL1 for PIL in the language L1 consists of
the following axiom schemata and rules. If a formula ϕ is provable from a set of
premises Γ we write Γ � ϕ. If this holds for Γ = ∅ we also write � ϕ.

Knowing Values and Public Inspection 81

Axiom Schemata

TAUT all instances of propositional tautologies
DIST [c](ϕ → ψ) → ([c]ϕ → [c]ψ)
LEARN [c]Kv(c)
NF Kv(c) → [d]Kv(c)
DET 〈c〉ϕ ↔ [c]ϕ
COMM [c][d]ϕ ↔ [d][c]ϕ
IR Kv(c) → ([c]ϕ → ϕ)

Rules

MP
ϕ,ϕ → ψ

ψ

NEC
ϕ

[c]ϕ

Intuitively, LEARN captures the effect of the inspection; NF says that the agent
does not forget; DET says that inspection is deterministic; COMM says that inspec-
tions commute; finally, IR expresses that inspection does not bring any new
information if the value is known already. Note that DET says that [c] is a func-
tion. It also implies seriality which we list in the following Lemma.

Lemma 1. The following schemes are provable in SPIL1:

– 〈c〉� (seriality)
– Kv(c) → (ϕ → [c]ϕ) (IR’)
– [c](ϕ ∧ ψ) ↔ [c]ϕ ∧ [c]ψ (DIST’)
– [c1] . . . [cn](ϕ → ψ) → ([c1] . . . [cn]ϕ → [c1] . . . [cn]ψ) (multi-DIST)
– [c1] . . . [cn](ϕ ∧ ψ) ↔ [c1] . . . [cn]ϕ ∧ [c1] . . . [cn]ψ (multi-DIST’)
– [c1] . . . [cn](Kv(c1) ∧ . . .Kv(cn)) (multi-LEARN)
– (Kv(c1) ∧ · · · ∧ Kv(cn)) → [d1] . . . [dn](Kv(c1) ∧ · · · ∧ Kv(cn)) (multi-NF)
– (Kv(c1) ∧ · · · ∧ Kv(cn)) → ([c1] . . . [cn]ϕ → ϕ) (multi-IR)

Moreover, the multi-NEC rule is admissible: If � ϕ, then � [c1] . . . [cn]ϕ.

Proof. For reasons of space we only prove three of the items and leave the others
as an exercise for the reader. For IR’, we use DET and TAUT:

(IR)
Kv(c) → ([c]¬ϕ → ¬ϕ)

(DET)
Kv(c) → (¬[c]ϕ → ¬ϕ)

(TAUT)
Kv(c) → (ϕ → [c]ϕ)

To show multi-NEC, we use DIST, NEC and TAUT. For simplicity, consider the case
where C = {c1, c2}.

(DIST)
[c2](ϕ → ψ) → ([c2]ϕ → [c2]ψ)

(NEC)
[c1]([c2](ϕ → ψ) → ([c2]ϕ → [c2]ψ))

(DIST, TAUT)
[c1][c2](ϕ → ψ) → [c1]([c2]ϕ → [c2]ψ)

(DIST, TAUT)
[c1][c2](ϕ → ψ) → ([c1][c2]ϕ → [c1][c2]ψ)

For multi-LEARN, we use LEARN, NEC, COMM, DIST’ and TAUT:

82 J. van Eijck et al.

(LEARN)
[c1]Kv(c1) (NEC)

[c2][c1]Kv(c1) (COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2) (NEC)

[c1][c2]Kv(c2) (DIST’, TAUT)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2)) (DIST’, TAUT)

[c1][c2](Kv(c1) ∧ Kv(c2))

Definition 4. We use the following abbreviations for any two finite sets of con-
stants C = {c1, . . . , cm} and D = {d1, . . . , dn}.
– Kv(C) := Kv(c1) ∧ · · · ∧ Kv(cm)
– [C]ϕ := [c1] . . . [cm]ϕ
– Kv(C,D) := [C]Kv(D).

Note that by multi-DIST’ and COMM the exact enumeration of C and D in
Definition 4 do not matter modulo logical equivalence.

In particular, these abbreviations allow us to shorten the “multi” items from
Lemma 1 to Kv(C,C), Kv(C) → Kv(D,C) and Kv(C) → ([C]ϕ → ϕ). The
abbreviation Kv(C,D) allows us to define dependencies and it will be crucial in
our completeness proof. We have that:

M, s � Kv(C,D) ⇔ for all t ∈ S : if s =C t then s =D t

Definition 5. Let L2 be the language given by ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kv(C,C).

Note that this language is essentially a fragment of L1 due to the above
abbreviation, where (possibly multiple) [c] operators only occur in front of Kv
operators (or conjunctions thereof). Moreover, the next Lemma might count as
a small surprise.

Lemma 2. L1 and L2 are equally expressive.

Proof. As Kv(·, ·) was just defined as an abbreviation, we already know that L1 is
at least as expressive as L2: we have L2 ⊆ L1. We can also translate in the other
direction by pushing all sensing operators through negations and conjunctions.
Formally, let t : L1 → L2 be defined by

Kv(d) → Kv(∅, {d})
¬ϕ → ¬t(ϕ)
ϕ ∧ ψ → t(ϕ) ∧ t(ψ)

[c]¬ϕ → ¬t([c]ϕ)
[c](ϕ ∧ ψ) → t([c]ϕ) ∧ t([c]ψ)
[c]� → �
[c1] . . . [cn]Kv(d) → Kv({c1, . . . , cn}, {d})

Note that this translation preserves and reflects truth because determinacy and
distribution are valid (determinacy allows us to push [c] through negations,
distribution to push [c] through conjunctions). At this stage we have not yet
established completeness, but determinacy is also an axiom. Hence we can note
separately that ϕ ↔ t(ϕ) is provable and that t preserves and reflects provability
and consistency.

Knowing Values and Public Inspection 83

Example 2. Note that the translation of [c]ϕ formulas also depends on the top
connective within ϕ. For example we have

t([c](¬Kv(d) ∧ [e]Kv(f))) = t([c]¬Kv(d)) ∧ t([c][e]Kv(f))
= ¬Kv({c}, {d}) ∧ Kv({c, e}, {f})

The language L2 allows us to connect PIL to the maybe most famous axioms
about database theory and dependence logic from [5].

Lemma 3. Armstrong’s axioms are semantically valid and derivable in SPIL1:

– Kv(C,D) for any D ⊆ C (projectivity)
– Kv(C,D) ∧ Kv(D,E) → Kv(C,E) (transitivity)
– Kv(C,D) ∧ Kv(C,E) → Kv(C,D ∪ E) (additivity)

Proof. The semantic validity is easy to check, hence we focus on the derivations.
For projectivity, take any two finite sets D ⊆ C. If D = C, then we only need

a derivation like the following which basically generalizes learning to finite sets.

(LEARN)
[c1]Kv(c1) (NEC)

[c2][c1]Kv(c1) (COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2) (NEC)

[c1][c2]Kv(c1) (DIST)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2)) (DIST)

[c1][c2](Kv(c1) ∧ Kv(c2))

If D � C, then continue by applying NEC for all elements of C\D to get Kv(C,D).
Transitivity follows from IR and NF as follows. For simplicity, first we only

consider the case where C, D and E are singletons.

(NF)
Kv(e) → [c]Kv(e)

(NEC)
[d](Kv(e) → [c]Kv(e))

(DIST)
[d]Kv(e) → [d][c]Kv(e)

(COMM)
[d]Kv(e) → [c][d]Kv(e)

(IR)
Kv(d) → ([d]Kv(e) → Kv(e))

(NEC)
[c](Kv(d) → ([d]Kv(e) → Kv(e)))

(DIST)
[c]Kv(d) → [c]([d]Kv(e) → Kv(e))

(DIST)
[c]Kv(d) → ([c][d]Kv(e) → [c]Kv(e))

(TAUT)
[c]Kv(d) → ([d]Kv(e) → [c]Kv(e))

Now consider any three finite sets of constants C = {c1, . . . , cl}. Using the
abbreviations from Definition 4 and the “multi” rules given in Lemma 1 it is
easy to generalize the proof. In fact, the proof is exactly the same with capital
letters.

Similarly, additivity follows immediately from multi-DIST’.

We can now use Armstrong’s axioms to prove completeness of our logic. The
crucial idea is a new definition of a canonical dependency graph.

Theorem 1 (Strong Completeness). For all sets of formulas Δ ⊆ L1 and
all formulas ϕ ∈ L1, if Δ � ϕ, then also Δ � ϕ.

84 J. van Eijck et al.

Proof. By contraposition using a canonical model. Suppose Δ � ϕ. Then Δ ∪
{¬ϕ} is consistent and there is a maximally consistent set Γ ⊆ L1 such that
Γ ⊇ Δ ∪ {¬ϕ}. We will now build a model MΓ such that for the world C in
that model we have MΓ , C � Γ which implies Δ � ϕ.

Definition 6 (Canonical Graph and Model). Let the graph GΓ :=
(P(C),→) be given by A → B iff Kv(A,B) ∈ Γ . By Lemma 3 this graph
has properties corresponding to the Armstrong axioms: projectivity, transitiv-
ity and additivity. We call a set of variables s ⊆ C closed under GΓ iff whenever
A ⊆ s and A → B in GΓ , then also B ⊆ s. Then let the canonical model be
MΓ := (S,D, V) where

S := {s ⊆ C | s is closed under GΓ },D := {0, 1} and V (s, c) =
{

0 if c ∈ s
1 otherwise

Note that our domain is just {0, 1}. This is possible because we do not have
to find a model where the dependencies hold globally. Instead, Kv(C, d) only
says that given the C-values at the actual world, also the d values are the same
at the other worlds. The dependency does not need to hold between two non-
actual worlds. This distinguishes our models from relationships as discussed in
[5] where no actual world or state is used, see Example 4 below.

Given the definition of a canonical model we can now show:

Lemma 4 (Truth Lemma). MΓ , C � ϕ iff ϕ ∈ Γ .

Before going into the proof, let us emphasize two peculiarities of our truth
lemma: First, the states in our canonical model are not maximally consistent sets
of formulas but sets of constants. Second, we only claim the truth Lemma at one
specific state, namely C where all constants have value 0. As our language does
not include nested epistemic modalities, we actually never evaluate formulas at
other states of our canonical model.

Proof (Truth Lemma). Note that it suffices to show this for all ϕ in L2: Given
some ϕ ∈ L1, by Lemma 2 we have that MΓ , C � ϕ ⇐⇒ MΓ , C � t(ϕ)
because the translation preserves and reflects truth. Moreover, we have ϕ ∈
Γ ⇐⇒ t(ϕ) ∈ Γ , because ϕ ↔ t(ϕ) is provable in SPIL1. Hence it suffices
to show that MΓ , C � t(ϕ) iff t(ϕ) ∈ Γ , i.e. to show the Truth Lemma for L2.
Again, negation and conjunction are standard, the crucial case are dependencies.

Suppose Kv(C,D) ∈ Γ . By definition C → D in GΓ . To show MΓ , C �
Kv(C,D), take any t such that C =C t in MΓ . Then by definition of V we have
C ⊆ t. As t is closed under GΓ , this implies D ⊆ t. Now by definition of V we
have C =D t.

For the converse, suppose Kv(C,D) �∈ Γ . Then by definition C �→ D in GΓ .
Now, let t := {c′ ∈ C | C → {c′} in GΓ }. This gives us C ⊆ t. But we also
have D �⊆ t because otherwise additivity would imply C → D in GΓ . Moreover,
because GΓ is transitive it is enough to “go one step” in GΓ to get a set that is
closed under GΓ . This means that t is closed under GΓ and therefore a state in
our model, i.e. we have t ∈ S. Now by definition of V and projectivity, we have
C =C t but C �=D t. Thus t is a witness for MΓ , C � Kv(C,D).

Knowing Values and Public Inspection 85

This also finishes the completeness proof. Note that we used all three prop-
erties corresponding to the Armstrong axioms.

Example 3. To illustrate the idea of the canonical dependency graph, let us
study a concrete example of what the graph and model look like. Consider the
maximally consistent set Γ = {¬Kv(c),¬Kv(d),Kv(e),Kv(c, d), . . . }. The inter-
esting part of the canonical graph GΓ then looks as follows, where the nodes are
subsets of {c, d, e}. For clarity we only draw → ∩ �⊆, i.e. we omit edges given by
inclusions. For example all nodes will also have an edge going to the ∅ node.

{c, d, e}{e, c}

{c, d}

{d, e}

{c}{d}∅

{e}

To get a model out of this graph, note that there are exactly three subsets of C

closed under following the edges. Namely, let S = {s : {e}, t : {d, e}, u : {c, d, e}}
and use the binary valuation which says that a constant has value 0 iff it is an
element of the state. It is then easy to check that M, u � Γ .

s t u
c 1 1 0
d 1 0 0
e 0 0 0

It is also straightforward to define an appropriate notion of bisimulation.

Definition 7. Two pointed models ((S,D, V), s) and ((S′,D′, V ′), s′), are
bisimilar iff (i) For all finite C ⊆ C and all d ∈ C: If there is a t ∈ S such
that s =C t and s �=d t, then there is a t′ ∈ S′ such that s′ =C t′ and s′ �=d t′;
and (ii) Vice versa.

Note that we do not need the bisimulation to also link non-actual worlds.
This is because all formulas are evaluated at the same world. In fact it would be
too strong for the following characterization.

Theorem 2. Two pointed models satisfy the same formulas iff they are
bisimilar.

Proof. By Lemma 2 we only have to consider formulas of L2. Moreover, it suffices
to consider formulas Kv(C, d) with a singleton in the second set because Kv(C,D)
is equivalent to

∧
d∈D Kv(C, d). Then it is straightforward to show that if M, s

and M′, s′ are bisimilar then M, s � ¬Kv(C, d) ⇐⇒ M′, s′ � ¬Kv(C, d) by
definition of our bisimulation. The other way around is also obvious since the
two conditions for bisimulation are based on the semantics of ¬Kv(C, d).

Note that a bisimulation characterization for a language without the dynamic
operator can be obtained by restricting Definition 7 to C = ∅. We leave it as
an exercise for the reader to use this and Theorem 2 to show that [c] is not
reducible, which distinguishes it from the public announcement [ϕ] in PAL.

86 J. van Eijck et al.

Example 4 (Pointed Models Make a Difference). It seems that the following
theorem of our logic does not translate to Armstrong’s system from [5].

[c](Kv(d) ∨ Kv(e)) ↔ ([c]Kv(d) ∨ [c]Kv(e))

First, to see that this is provable, note that it follows from determinacy and
seriality. Second, it is valid because we consider pointed models which convey
more information than a simple list of possible values. Consider the following
table which represents 4 possible worlds.

c d e
1 1 3
1 1 2
2 2 1
2 3 1

Here we would say that “After learning c we know d or we know e.”, i.e. the
antecedent of above formula holds. However, the consequent only holds if we
evaluate formulas while pointing at a specific world/row: It is globally true that
given c we will learn d or that given c we will learn e. But none of the two disjuncts
holds globally which would be needed for a dependency in Armstrong’s sense.
Note that this is more a matter of expressiveness than of logical strength. In
Armstrong’s system there is just no way to express [c](Kv(d) ∨ Kv(e)).

4 Multi-agent PIL

We now generalize the Public Inspection Logic to multiple agents. In the lan-
guage we use Kvi to say that agent i knows the value of c and in the models
an accessibility relation for each agent is added to describe their knowledge. To
obtain a complete proof system we can leave most axioms as above but have to
restrict the irrelevance axiom. Again the completeness +proof uses a canonical
model construction and a truth lemma for a +restricted but equally expressive
syntax. The only change is that we now define a dependency graph for each agent
in order to define accessibility relations instead of restricted sets of worlds.

Definition 8 (Multi-Agent PIL). We fix a non-empty set of agents I. The
language LI

1 of multi-agent Public Inspection Logic is given by

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kvic | [c]ϕ

where i ∈ I. We interpret it on models 〈S,D, V,R〉 where S, D and V are as
before and R assigns to each agent i an equivalence relation ∼i over S. The
semantics are standard for the booleans and as follows:

M, s � Kvic ⇐⇒ ∀t ∈ S : s ∼i t ⇒ s =c t
M, s � [c]ϕ ⇐⇒ M|sc, s � ϕ

where M|sc is 〈S′,D, V |S′×C, R|S′×S′〉 with S′ = {t ∈ S | s =c t}.

Knowing Values and Public Inspection 87

Analogous to Definition 4 we define the following abbreviation to express
dependencies known by agent i and note its semantics:

Kvi(C,D) := [c1] . . . [cn](Kvi(d1) ∧ · · · ∧ Kvi(dm))

M, s � Kvi(C,D) ⇔ for all t ∈ S : if s ∼i t and s =C t then s =D t

The proof system SPIL for PIL in the language LI
1 is obtained by replac-

ing each Kv in the axioms of SPIL1 by Kvi, and replacing IR by the following
restricted version:

RIR Kvic → ([c]ϕ → ϕ) where ϕ does not mention any agent besides i

Before summarizing the completeness proof for the multi-agent setting, let
us highlight some details of this definition.

As be fore the actual state s plays an important role in the semantics of [c].
However, we could also use an alternative but equivalent definition: Instead of
deleting states, only delete the ∼i links between states that disagree on the value
of c. Then the update no longer depends on the actual state.

For traditional reasons we define ∼i to be an equivalence relation. This is
not strictly necessary, because our language can not tell whether the relation is
reflexive, transitive or symmetric. Removing this constraint and extending the
class of models would thus not make any difference in terms of validities.

For the proof system, note that the original irrelevance axiom IR is not valid
in the multi-agent setting because ϕ might talk about other agents for which the
inspection of c does matter.

Theorem 3 (Strong Completeness for SPIL). For all sets of formulas Δ ⊆
LI
1 and all formulas ϕ ∈ LI

1, if Δ � ϕ, then also Δ � ϕ.

Proof. By the same methods as for Theorem 1. Given a maximally consistent
set Γ ⊆ LI

1 we want to build a model MΓ such that for the world C in that
model we have MΓ , C � Γ .

First, for each agent i ∈ I, let Gi
Γ be the graph given by A →i B : ⇐⇒

Γ � Kvi(A,B). Given that the proof system SPIL was obtained by indexing
the axioms of SPIL1, it is easy to check that indexed versions of the Armstrong
axioms are provable and therefore all the graphs Gi

Γ for i ∈ I will have the
corresponding properties. In particular RIR suffices for this.

Second, define the canonical model MΓ := (S,D, V,R) where S := P(C),
D := {0, 1}, V (s, c) := 0 if c ∈ s and V (s, c) := 1 otherwise, and s ∼i t iff s and
t are both closed or both not closed under Gi

Γ .

Lemma 5 (Multi-Agent Truth Lemma). MΓ , C � ϕ iff ϕ ∈ Γ .

Proof. Again it suffices to show the Truth Lemma for a restricted language and
we only consider the state C. We proceed by induction on ϕ. The crucial case is
when ϕ is of form Kvi(C,D).

Suppose Kvi(C,D) ∈ Γ . Then by definition C → D in Gi
Γ . To show MΓ , C �

Kvi(C,D), take any t such that C ∼i t and C =C t in MΓ . Then by definition

88 J. van Eijck et al.

of V we have C ⊆ t. Moreover, C is closed under Gi
Γ . Hence by definition of ∼i

also t must be closed under Gi
Γ which implies D ⊆ t. Now by definition of V we

have C =D t.
For the converse, suppose Kvi(C,D) �∈ Γ . Then by definition C �→ D in Gi

Γ .
Now, let t := {c′ ∈ C | C → {c′} in Gi

Γ }. This gives us C ⊆ t. But we also
have D �⊆ t because otherwise additivity would imply C → D in Gi

Γ . Moreover,
because Gi

Γ is transitive it is enough to “go one step” in Gi
Γ to get a set that

is closed under Gi
Γ . This means that t is closed under Gi

Γ and therefore by
definition of ∼i we have C ∼i t. Now by definition of V and projectivity, we
have C =C t but C �=D t. Thus t is a witness for MΓ , C � Kvi(C,D).

Again the Truth Lemma also finishes the completeness proof.

Fig. 1. Two canonical dependency graphs and the resulting canonical model.

Example 5. Analogous to Example 3, the following illustrates the multi-agent
version of our canonical construction. Consider the maximally consistent set
Γ = {¬Kv1(d),Kv1(c, d),¬Kv1(d, c),¬Kv2(c),¬Kv2(c, d),Kv1(d, c), . . . }. Note
that agents 1 and 2 do not differ in which values they know right now but
there is a difference in what they will learn from inspections of c and d. The two
canonical dependency graphs generated from Γ are shown in Fig. 1. Again for
clarity we only draw the non-inclusion arrows. The subsets of C = {c, d} closed
under the graphs are thus {{c, d}, {d}, ∅} and {{c, d}, {c}, ∅} for agent 1 and 2
respectively, inducing the equivalence relations as shown in Fig. 1.

It is also not hard to find the right notion of bisimulation for SPIL.

Definition 9. Given two models (S,D, V,R) and (S′,D′, V ′, R′), a relation Z ⊆
S × S′ is a multi-agent bisimulation iff for all sZs′ we have (i) For all finite
C ⊆ C, all d ∈ C and all agents i: If there is a t ∈ S such that s ∼i t and s =C t
and s �=d t, then there is a t′ ∈ S′ such that tZt′ and s′ ∼i t′ and s =C t and
s′ �=d t′; and (ii) Vice versa.

Theorem 4. Two pointed models satisfy the same formulas of the multi-agent
language LI

1 iff there is a multi-agent bisimulation linking them.

As it is very similar to the one of Theorem 2, we omit the proof here.

Knowing Values and Public Inspection 89

5 Future Work

Between our specific approach and the general language of [10], a lot can still
be explored. An advantage of having a weaker language with explicit operators,
instead of encoding them in a more general language, is that we can clearly see
the properties of those operators showing up as intuitive axioms.

The framework can be extended in different directions. We could for example
add equalities c = d to the language, together with knowledge K(c = d) and
announcement [c = d]. No changes to the models are needed, but axiomatizing
these operators seems not straightforward. Alternatively, just like Plaza added
Kv to PAL, we can also add K to PIL. Another next language to be studied is
thus PIL + K from Table 2 above and given by

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kvic | Kiϕ | [c]ϕ.

Note that in this language, we can also express knowledge of dependency in
contrast to de facto dependency. For example, Ki[c]Kvid expresses that agent
i knows that d functionally depends on c, while [c]Kvid express that the value
of d (given the information state of i) is determined by the actual value of c
de facto. In particular the latter does not imply that i knows this. The agent
can still consider other values of c possible that would not determine the value
of d. To see the difference technically, we can spell out the truth condition for
Ki[c]Kvi(d) under standard Kripke semantics for Ki on S5 models:

M, s � Ki[c]Kvi(d) ⇔ for all t1 ∼i s, t2 ∼i s : t1 =c t2 =⇒ t1 =d t2

Now consider Example 4: [c]Kv(d) holds in the first row, but K[c]Kv(d) does not
hold since the semantics of K require [c]Kv(d) to hold at all worlds considered
possible by the agent. This also shows that [c]Kv(d) is not positively introspective
(i.e. the formula [c]Kv(d) → Ki[c]Kv(d) is not valid), and it is essentially not a
subjective epistemic formula.

In this way, K[c]Kv(d) can also be viewed as the atomic formula = (c, d)
in dependence logic (DL) from [11]. A team model of DL can be viewed as
the set of epistemically accessible worlds, i.e., a single-agent model in our case.
The connection with dependence logic also brings PIL closer to the first-order
variant of epistemic inquisitive logic by [12], where knowledge of entailment of
interrogatives can also be viewed as the knowledge of dependency. For a detailed
comparison with our approach, see [13, Sect. 6.7.4].

Another approach is to make the dependency more explicit and include func-
tions in the syntax. In [14] a functional dependency operator Kfi is added to the
epistemic language with Kvi operators: Kfi(c, d) := ∃fKi(d = f(c)) where f
ranges over a pool of functions.

Finally, there is an independent but related line of work on (in)dependency
of variables using predicates, see for example [15–18]. In particular, [17] also uses
a notion of dependency as an epistemic implication “Knowing c implies knowing
d.”, similar to our formula Kv(c, d). In [18] also a “dependency graph” is used to
describe how different variables, in this case payoff functions in strategic games,

90 J. van Eijck et al.

may depend on each other. Note however, that these graphs are not the same
as our canonical dependency graphs from Definition 6. Our graphs are directed
and describe determination between sets of variables. In contrast, the graphs in
[18] are undirected and consist of singleton nodes for each player in a game. We
leave a more detailed comparison for a future occasion.

Acknowledgements. We thank the following people for useful comments on this
work: Alexandru Baltag, Peter van Emde Boas, Hans van Ditmarsch, Jie Fan, Kai Li
and our anonymous reviewers.

This research cooperation was made possible by travel grant 040.11.490 from NWO
for Yanjing Wang, which is herewith gratefully acknowledged.

References

1. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Dit-
marsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical
Semantics. Springer (2016, forthcoming)

2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol. 1.
Springer, Heidelberg (2007)

3. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common

knowledge, and private suspicions. In: Bilboa, I. (ed.) TARK 1998, pp. 43–56 (1998)
5. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP

Congress, Geneva, Switzerland, vol. 74, pp. 580–583 (1974)
6. Sweeney, L.: Only you, your doctor, and many others may know. Technology Sci-

ence (2015). http://techscience.org/a/2015092903/
7. Wang, Y., Fan, J.: Knowing that, knowing what, and public communication: public

announcement logic with KV operators. In: IJCAI 2013, pp. 1147–1154 (2013)
8. Wang, Y., Fan, J.: Conditionally knowing what. In: Advances in Modal Logic, vol.

10, pp. 569–587 (2014)
9. Gu, T., Wang, Y.: “Knowing value” logic as a normal modal logic. In: Advances

in Modal Logic, vol. 11, pp. 362–381 (2016)
10. Baltag, A.: To know is to know the value of a variable. In: Advances in Modal

Logic, vol. 11, pp. 135–155 (2016)
11. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly

Logic. Cambridge University Press, New York (2007)
12. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192(6),

1643–1687 (2015)
13. Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam (2016)
14. Ding, Y.: Epistemic logic with functional dependency operator. Bachelor’s thesis

(in Chinese), Peking University (2015)
15. More, S.M., Naumov, P.: An independence relation for sets of secrets. Stud. Logica

94(1), 73–85 (2010)
16. Naumov, P.: Independence in information spaces. Stud. Logica 100(5), 953–973

(2012)
17. Naumov, P., Nicholls, B.: Rationally functional dependence. J. Philos. Logic 43(2–

3), 603–616 (2014)
18. Harjes, K., Naumov, P.: Functional dependence in strategic games. Notre Dame J.

Formal Logic 57(3), 341–353 (2016)

http://techscience.org/a/2015092903/

	Knowing Values and Public Inspection
	1 Introduction
	2 Existing Work
	3 Single-Agent PIL
	4 Multi-agent PIL
	5 Future Work
	References

