13 research outputs found
Поселения Амнинского культурного типа в контексте раннего неолита севера Западной Сибири
Purpose. The Stone Age settlement of Amnya I in North-Western Siberia represents the northernmost hunter-gatherer-fisher fort in Eurasia. Dating back to the beginning of the 6th millennium BC, this unique site enables the study of key innovations of the Neolithization process in the taiga zone, such as defensive structures, early pottery, and an increase in polished tools including arrowheads. Results. The Amnya cultural type also includes the nearby Kirip-Vis-Yugan-2 settlement, which shows close similarities with Amnya I in material culture however lacks fortifications. To follow up open questions, work on Amnya type sites was resumed in 2019. Plans of the sites, their layout and stratigraphy were clarified, and first palaeoenvironmental data was received. Radiocarbon dating of stratified contexts at Amnya I confirmed its Early Neolithic age. The settlement of Amnya II located just 50 m east of the fortifications was also dated. Originally attributed to later, Eneolithic times, the two new AMS dates date back to the beginning of the 6th millennium BC, indicating that Amnya I and II existed broadly contemporaneously. Palaeoenvironmental studies based on drillings in the adjacent peat bog show that at the time of settlement at Amnya I and II open water existed on the south of the hill fort, and the Amnya River was flowing on the north side. Thus, this place was comfortable for living and provided good conditions for fishing. Botanical macro-remains from cultural layers at Amnya I show that during the existence of the settlement, along with pine, deciduous trees – birch and alder, have grown in the area of the site, indicating a warmer climate, compared to current conditions. Conclusion. The studied archaeological settlements show the case of Neolithic innovations which testify to formation of special social structures and, most likely, appearance of the new population in the taiga zone of Western Siberia at the turn of 7th – 6th millennium BC. © 2021 Novosibirsk State Technical University. All rights reserved.The work was carried out as part of the program of fundamental scientific research of the State Academies of Sciences for 2013–2020, the project “Ancient and Medieval cultures of the Urals: regional features in the context of global pro-cesses” (registration number: AAAA-A16-116040110036-1), the German Research Community (DFG) (Cluster of Excellence ROOTS at Kiel University), and the state mission of the Ministry of Science and Education of the Russian Federation “Regional Identity of Russia: Comparative Historical and Philological Studies” (topic no. FEUz-2020-0056). The authors would like to thank Yasmin Dannath (Institute of Pre-and Protohistoric Archaeology, Kiel University, Germany) for identifying the botanical macro-remains
The world's oldest-known promontory fort: Amnya and the acceleration of hunter-gatherer diversity in Siberia 8000 years ago
Archaeological narratives have traditionally associated the rise of social and political 'complexity' with the emergence of agricultural societies. However, this framework neglects the innovations of the hunter-gatherer populations occupying the Siberian taiga 8000 years ago, including the construction of some of the oldest-known fortified sites in the world. Here, the authors present results from the fortified site of Amnya in western Siberia, reporting new radiocarbon dates as the basis for a re-evaluation of the chronology and settlement organisation. Assessed within the context of the changing social and environmental landscape of the taiga, Amnya and similar fortified sites can be understood as one facet of a broader adaptive strategy. Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antiquity Publications Ltd.Deutsche Forschungsgemeinschaft, DFG: EXC 2150–390870439This research forms part of the programme of scientific research of the State Academies of Sciences for 2013–2020, the “Ancient and medieval cultures of the Urals: regional features in the context of global processes” project (registration number: AAAA-A16-116040110036-1) and the state mission of the Ministry of Science and Education of the Russian Federation “Interaction of Cultural and Linguistic Traditions: The Urals in the Context of the Dynamics of Historical Processes” (topic no. FEUz-2020-0056). Funds were also provided by the Cluster of Excellence ROOTS, Kiel, and the German Research Foundation (DFG) under Germany's Excellence Strategy (grant no. EXC 2150–390870439)
Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter–gatherers
The introduction of pottery vessels to Europe has long been seen as closely linked with the spread of agriculture and pastoralism from the Near East. The adoption of pottery technology by hunter–gatherers in Northern and Eastern Europe does not fit this paradigm, and its role within these communities is so far unresolved. To investigate the motivations for hunter–gatherer pottery use, here, we present the systematic analysis of the contents of 528 early vessels from the Baltic Sea region, mostly dating to the late 6th–5th millennium cal BC, using molecular and isotopic characterization techniques. The results demonstrate clear sub-regional trends in the use of ceramics by hunter–gatherers; aquatic resources in the Eastern Baltic, non-ruminant animal fats in the Southeastern Baltic, and a more variable use, including ruminant animal products, in the Western Baltic, potentially including dairy. We found surprisingly little evidence for the use of ceramics for non-culinary activities, such as the production of resins. We attribute the emergence of these subregional cuisines to the diffusion of new culinary ideas afforded by the adoption of pottery, e.g. cooking and combining foods, but culturally contextualized and influenced by traditional practices
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants
Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of north east Europe
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.Clio Der Sarkissian, Oleg Balanovsky, Guido Brandt, Valery Khartanovich, Alexandra Buzhilova, Sergey Koshel, Valery Zaporozhchenko, Detlef Gronenborn, Vyacheslav Moiseyev, Eugen Kolpakov, Vladimir Shumkin, Kurt W. Alt, Elena Balanovska, Alan Cooper, Wolfgang Haak, the Genographic Consortiu
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Archaeological Heritage Managemen
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years(1,2). Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period(3). Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe(4), but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Molecular Technology and Informatics for Personalised Medicine and Healt