19 research outputs found

    Role of Cell-to-Cell Variability in Activating a Positive Feedback Antiviral Response in Human Dendritic Cells

    Get PDF
    In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop

    Interferon-Ξ² Pretreatment of Conventional and Plasmacytoid Human Dendritic Cells Enhances Their Activation by Influenza Virus

    Get PDF
    Influenza virus produces a protein, NS1, that inhibits infected cells from releasing type I interferon (IFN) and blocks maturation of conventional dendritic cells (DCs). As a result, influenza virus is a poor activator of both mouse and human DCs in vitro. However, in vivo a strong immune response to virus infection is generated in both species, suggesting that other factors may contribute to the maturation of DCs in vivo. It is likely that the environment in which a DC encounters a virus would contain multiple pro-inflammatory molecules, including type I IFN. Type I IFN is a critical component of the viral immune response that initiates an antiviral state in cells, primarily by triggering a broad transcriptional program that interferes with the ability of virus to establish infection in the cell. In this study, we have examined the activation profiles of both conventional and plasmacytoid dendritic cells (cDCs and pDCs) in response to an influenza virus infection in the context of a type I IFN-containing environment. We found that both cDCs and pDCs demonstrate a greater activation response to influenza virus when pre-exposed to IFN-Ξ² (IFN priming); although, the priming kinetics are different in these two cell types. This strongly suggests that type I IFN functions not only to reduce viral replication in these immune cells, but also to promote greater DC activation during influenza virus infections

    Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells

    Get PDF
    Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response

    Critical Role of Constitutive Type I Interferon Response in Bronchial Epithelial Cell to Influenza Infection

    Get PDF
    Innate antiviral responses in bronchial epithelial cells (BECs) provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs). However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-Ξ². However it was found that there was constitutive release of IFN-Ξ² by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-Ξ² release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells

    Predictors of nurturant parenting in teen mothers living in three generational families

    Full text link
    Direct and indirect effects of grandparents on maternal nurturance in teen mothers (TM) living in three-generational families were explored with path analytic techniques in a sample of 107 working-class families. Perceived support from the teen's mother, grandparents' nurturance toward the baby, and the presence of the grandfather as a father figure in the home were hypothesized as increasing TM nurturance. TM nurturance was found to be positively predicted by grandparent nurturance and negatively predicted by TM perceived support from her mother. The strongest predictor of TM nurturance was grandfather nurturance toward the baby.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43953/1/10578_2006_Article_BF02353198.pd

    Lovastatin inhibits formation of AA amyloid.

    No full text
    Item does not contain fulltextAmyloid A (AA) amyloidosis is a severe complication of many chronic inflammatory disorders, including the hereditary periodic fever syndromes. However, in one of these periodic fever syndromes, the hyper IgD and periodic fever syndrome, amyloidosis is rare despite vigorous, recurring inflammation. This hereditary syndrome is caused by mutations in the gene coding for mevalonate kinase, an enzyme of the isoprenoid pathway. In this study, we used a cell culture system with human monocytes to show that inhibition of the isoprenoid pathway inhibits amyloidogenesis. Inhibition of the isoprenoid pathway by lovastatin resulted in a dose-dependent reduction of amyloid formed [53% at 10 microM (P=0.01)] compared with mononuclear cells that are exposed only to serum AA. The inhibitory effects of lovastatin are reversible by addition of farnesol but not geranylgeraniol. Farnesyl transferase inhibition also inhibited amyloidogenesis. These results implicate that the isoprenoid metabolism could be a potential target for prevention and treatment of AA amyloidosis
    corecore