1,018 research outputs found

    Critical slowing down near the multiferroic phase transition in MnWO4_4

    Full text link
    By using broadband dielectric spectroscopy in the radiofrequency and microwave range we studied the magnetoelectric dynamics in the multiferroic chiral antiferromagnet MnWO4_4. Above the multiferroic phase transition at TN212.6T_{N2} \approx 12.6 K we observe a critical slowing down of the corresponding magnetoelectric fluctuations resembling the soft-mode behavior in canonical ferroelectrics. This electric field driven excitation carries much less spectral weight than ordinary phonon modes. Also the critical slowing down of this mode scales with an exponent larger than one which is expected for magnetic second order phase transition scenarios. Therefore the investigated dynamics have to be interpreted as the softening of an electrically active magnetic excitation, an electromagnon.Comment: 5 pages, 4 figures, appendi

    Impurity intrusion in radio-frequency micro-plasma jets operated in ambient air

    Full text link
    Space and time resolved concentrations of helium metastable atoms in an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. Spatial profiles as well as lifetime measurements show significant influences of air entering the discharge from the front nozzle and of impurities originating from the gas supply system. Quenching of metastables was used to deduce quantitative concentrations of intruding impurities. The impurity profile along the jet axis was determined from optical emission spectroscopy as well as their dependance on the feed gas flow through the jet.Comment: Journal of Physics D: Applied Physics (accepted), 6 page

    Nanometer-scale Tomographic Reconstruction of 3D Electrostatic Potentials in GaAs/AlGaAs Core-Shell Nanowires

    Full text link
    We report on the development of Electron Holographic Tomography towards a versatile potential measurement technique, overcoming several limitations, such as a limited tilt range, previously hampering a reproducible and accurate electrostatic potential reconstruction in three dimensions. Most notably, tomographic reconstruction is performed on optimally sampled polar grids taking into account symmetry and other spatial constraints of the nanostructure. Furthermore, holographic tilt series acquisition and alignment have been automated and adapted to three dimensions. We demonstrate 6 nm spatial and 0.2 V signal resolution by reconstructing various, previously hidden, potential details of a GaAs/AlGaAs core-shell nanowire. The improved tomographic reconstruction opens pathways towards the detection of minute potentials in nanostructures and an increase in speed and accuracy in related techniques such as X-ray tomography

    Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure

    Full text link
    Space and time resolved concentrations of Ar (3P2^{3}P_2) metastable atoms at the exit of an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. The discharge features a coaxial geometry with a hollow capillary as an inner electrode and a ceramic tube with metal ring as outer electrode. Absorption profiles of metastable atoms as well as optical emission measurements reveal the dynamics and the filamentary structure of the discharge. The average spatial distribution of Ar metastables is characterized with and without a target in front of the jet, showing that the target potential and therewith the electric field distribution substantially changes the filaments' expansion. Together with the detailed analysis of the ignition phase and the discharge's behavior under pulsed operation, the results give an insight into the excitation and de-excitation mechanisms

    State of Mnemiopsis leidyi (Ctenophora: Lobata) and mesozooplankton in Iranian waters of the Caspian Sea during 2008 in comparison with previous surveys

    Get PDF
    Mnemiopsis leidyi which was accidentally introduced into the Caspian Sea in 1999 and since then has colonized extensively. The horizontal distribution of M. leidyi and dominant mesozooplankton species was investigated in the south western Caspian Sea during February, May, July and November 2008. The average number and biomass of M. leidyi were in the same range (ca 200 individuals m^-3 (2000 ind m^-2)) and 16 g wet weight m^-3 (180 g m^-2) in comparison with previous surveys. As in previous years the population consisted mainly of individuals <1 cm. The decline in mesozooplankton species observed since 1996 continued in 2008. Only two species of the previously recorded 24 Cladocera species were found in 2008. Of five Copepoda species recorded in 1996, only one, Acartia tonsa, was found in 2008 and even here adult individuals have reduced 3-fold since 1996. Bivalve larvae have declined by one order of magnitude since 1996. Among the dominant species, only the numbers of Cirripedia larvae and in part the numbers of Pleopis polyphemoides (Cladocera) were in the same range as in 1996

    A Guide to Precision Calculations in Dyson's Hierarchical Scalar Field Theory

    Get PDF
    The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson's hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green's functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cut-off limit is obtained by letting beta reach a critical value beta_c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when beta -> beta_c, this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4.Comment: Uses revtex with psfig, 31 pages including 15 figure

    Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas

    Full text link
    Electron heating and ionization dynamics in capacitively coupled radio frequency (RF) atmospheric pressure microplasmas operated in helium are investigated by Particle in Cell simulations and semi-analytical modeling. A strong heating of electrons and ionization in the plasma bulk due to high bulk electric fields are observed at distinct times within the RF period. Based on the model the electric field is identified to be a drift field caused by a low electrical conductivity due to the high electron-neutral collision frequency at atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in this "Omega-mode". The phase of strongest bulk electric field and ionization is affected by the driving voltage amplitude. At high amplitudes, the plasma density is high, so that the sheath impedance is comparable to the bulk resistance. Thus, voltage and current are about 45{\deg} out of phase and maximum ionization is observed during sheath expansion with local maxima at the sheath edges. At low driving voltages, the plasma density is low and the discharge becomes more resistive resulting in a smaller phase shift of about 4{\deg}. Thus, maximum ionization occurs later within the RF period with a maximum in the discharge center. Significant analogies to electronegative low pressure macroscopic discharges operated in the Drift-Ambipolar mode are found, where similar mechanisms induced by a high electronegativity instead of a high collision frequency have been identified

    Axial light emission and Ar metastable densities in a parallel plate dc micro discharge in steady state and transient regimes

    Full text link
    Axial emission profiles in a parallel plate dc micro discharge (feedgas: argon; discharge gap d=1mm; pressure p=10Torr) were studied by means of time resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A) characteristics were recorded and Ar* metastable densities were measured by tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in the steady state regime are similar to corresponding profiles in standard size discharges (d=1cm, p=1Torr). For some discharge conditions relaxation oscillations are present when the micro discharge switches periodically between low current Townsend-like mode and normal glow. At the same time the axial emission profile shows transient behavior, starting with peak distribution at the anode, which gradually moves towards the cathode during the normal glow. The development of argon metastable densities highly correlates with the oscillating discharge current. Gas temperatures in the low current Townsend-like mode (T= 320-400K) and the high current glow mode (T=469-526K) were determined by the broadening of the recorded spectral profiles as a function of the discharge current.Comment: submitted to Plasma Sources Sci. Techno

    Concepts and characteristics of the 'COST Reference Microplasma Jet'

    Get PDF
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available

    Spawning of bluefin tuna in the black sea: historical evidence, environmental constraints and population plasticity

    Get PDF
    <div><p>The lucrative and highly migratory Atlantic bluefin tuna, <em>Thunnus thynnus</em> (Linnaeus 1758<em>;</em> Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.</p> </div
    corecore